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Introduction of Reinforcement Learning

* Agent maximizes rewards by interaction with environments

tl Agent ||
state reward action

S, | |R A
Markov Decision Process (MDP) <S— Sliifeinent J‘_
Markov Property . P(s_(t+1)|s_t, ...,s_1)=P(s_(t+1)|s_t)
Tuple:(S, 4, P,R,y)

* Objective . Find the policy that maximizes the discounted sum of rewards
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Introduction of Reinforcement Learning

’4 RL algorithms

Reinforce Deep Q Network
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a
Pe (1) = p(s1)pg(asls1)p(szls1, a1)pe(azls2)p(sslsz, az) -+ LK EL © MSE

L=r —|—fymz}xQ(s’,a’) - Q(Saa)

T
- p(sl)Dpe(at|st>p<st+1|st, a) TS

- _ Experience-Replay
R(z) = Zrt R(7) do not have to be differentiable « Double Q-Network
t=1
Expected Reward:

Ro = ) ROP(®) = Erepym RO
' Vf@) = fCVlogf ()

Actor-Critic Algorithm

Critic 544

. 2
e Loss = mm(rt + v * V(sgp1) — V(st))

VRg = Y R(D)Vpg(r) = ) R(Dpe(r)
Z Z Po(7) Actor {1t :

E(TMVIOQPB(T) advantage; = Q(sg,ar) —V(sp) =1 + y * V(spp1) —V(sp)
N .

1 Loss = min(— log(m) * advantage;)
= E7-pem[R(@)VIogpe ()] = NZ (t™Vlogpe(t™)
n:
N T,

R(x™)Vlogpe(atlst)
n=1t=1

1
N



Reinforcement Learning for Short Video Recommender System:
Introduction, Formulations and Challenges



Infrastructures of Short Video Recommender Systems
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Why RL for RS?

* Most recommender systems deploy supervised learning methods
* Predict the value of the candidate items or the lists

* Problem
e Lack of exploration ability
* Unable to optimize the long-term signals
e Short-term signals: the reward of each item and list
* Long-term signals: the total rewards of each session, or user returning time

* RL is a perfect paradigm to tackle these problems
* Interact with the environment by exploration and exploitation
* Aim to maximize the long-term rewards



MDP Definition of RL for RS

* State
* For each user request, we have a state:(user information, user history)
* User history: actions and rewards of previous steps

* Action

e TWo common choices

* The ID of the item to be recommended to the user
* The hyper-parameter of ranking functions

* Immediate Reward
* The user signals at each request
* Episode
* The lists of user requests in a session or a day
* Objective
* Aim to maximize the total positive signals of all users



Challenge of RL for Real RS

e Unstable Environment

e Each user is a environment, rather than fixed game
e System fluctuates between days and hours

* Large action space
e The number of candidate items is over 100M

* Multi-objectives

. gifferr]ent reward signals in short-videos: dwell time, like, follow, forward, comment, visiting
ept

e Safe and efficient exploration
 Random exploration hurts user experience

* Delayed feedback and credit assignment
* The long-term engagement signal is delayed and noisy
* It is hard to allocate credits to immediate actions



Basic Version of Reinforcement Learning for Kuaishou RS



Motivation of RL in Kuaishou RS

* Many hyper-parameters Exist in Kuaishou RS

* How to learn optimal parameters to maximize different objectives?
* Objectives: watch time, interactions, session depth

* Non-gradient methods CEM/Bayes are used in Kuaishou
* Unable to optimize long-term metric
e Lack of personalization

* RL
* Personalization
* Aim to maximize the long-term performance



Request-based MDP for RS

* MDP

 State:(user information, user history)

e User information:

e User history: states, actions, and rewards of previous steps
* Action

* Parameters of several ranking functions
* A continuous vector

e Reward

* 11 = watch time + like count * wyge + follow count * weopow +
forward count * Wrorward

e Episode
* Requests from opening the app to leaving the app



Request-based MDP for RS
* Objective

T
max Z vt (times + wl x like; + w2 * follow; + w3 * forward; + w4 * comment; + w5 * 0.1)
t=0

* Policy
* DNN

* Input state , output mu and sigma
e Sample action from Gaussian distribution

* Algorithm Selection

* Reinforce (Google)
» Slow convergence, only works for single objective
* PPO
* On-policy, does not work for off-policy setting of KS
* A3C
e Faster convergence , sensitive to different reward coefficient



Request-based MDP for RS
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Request-based MDP for RS

* Loss functions
* Actor loss —logr(als)(r +~* V(s') — V(s))

e Criticloss (r+v*V(s") —V(s))”
* Live Experiments
e Baseline: CEM
e Avg app time +0.15% Watch time +0.33% follow -1.08% VV -0.49%
* Fully launched
* Comparison with Contextual Bandits
* Gamma=0: contextual bandits

* Gamma=0.95 compares with gamma=0
e App time +0.089%, VV +0.37%, follow flat
e RL performs better than Bandits!



Constrained Reinforcement Learning for
Kuaishou RS



Constrained RL for Short-video Recommendation

e Several signals in short-video recommendations
* Watch time of multiple videos
* Main objective of the algorithm
* Dense responses
* Can be effectively optimized by RL
e Share, Download, Comment
 Sparse responses
* Serve as constraints

* The optimization program

max U;j(m)
T

st Ui(np) =2 Cio% =2, .., m,



Problem of Basic Version of RL

* The method is equal to learning a policy to optimize its Lagrangian

m
L(m, ) =Ur(m) + ) Li(Ui(r) - Ci), where 1; 2 0.
i=2

* The method exists following questions:
* 1.The estimation of the policy is not accurate for sparse signals
* The dense signal, such as watch time dominates the estimation
» 2.The discount factor of each signal is the same
* The discount factor for sparse signal should be small
e 3.Itis hard for a single policy to balance both dense responses and sparse responses
* Learning to optimize the sparse signal is difficult



Multi-Critic Policy Optimization

* Multi-Critic
* Each critic estimated the value of one objective (Challenge 1)
* Compare V; and (V,,,V;)
* V; learns watch time+interaction
* 11, learns watch time, V/; learns interaction
e Use MAE error to estimate two learning method
e Separate learning outperforms joint learning by 0.191% and 0.143% in terms of both
watch time and interaction

 Different critic has different discounted factor (Challenge 2)
 For Watch time, we can set factor to be 0.95
* For Interactions, we can set small factors



Multi-Critic Policy Optimization
* Actor Optimizes the Weighted Advantages

mGaX log”@(a‘s)(Advti'/ne(ss a) + A144d'vfollow(37 a') 4 )‘2Ad'vforwa7'd(3> a) ED >\3Advlike(37 a') =+ )\4Ad'vcomment(5’ 0,))
Adv,(s,a) = Q(s,a) — V(s)

* Live Experiments
e Baseline: Basic RL Version
* Avg app time +0.130% Watch time +0.387% follow -1.97% VV +0.15%
* Fully launched
* More flexible with weights of different objectives



Two-stage Constrained Actor-Critic(In submission)

* Challenge 3 still exists * Stage Two
* It is hard for single policy to optimize both * For the main response, learn a policy to
dense and sparse metrics. optimize its cumulative reward
e Stage One » Softly regularize the policy to be close to

other auxiliary policies

far from other policies. The optimization is formalized below:

* For each auxiliary response, learn a policy

to optimize its cumulative reward NG
m;’;lx T 1

st. Dgp(nl||lmg,) <€, i=2,..., m, (8)
(k) _ /
k1 ) 9 where A" =ri(s,a) +71V, 0 (s") = V 0 ().
¢1( ) argminE, [(ri(s, a) + y,-V¢(k) (s)— V¢(s)) ] A ,
¢ 0; i Equation (8) has the closed form solution

§ i m _ A (k)

We update the actor to maximize the advantage: 7 (als) o l—[ (7, (als)) 3L exp( ‘3} ) )
i=2 2 j=2 Aj
Gi(kH) — argmax By [Algk) log (Jl'g(a|s))] where A; with i = 2,...,m are Lagrangian multipliers for con-
0 ! straints in (8). Following [28], we specify the value of A; to control
- Agk) = ri(s,a) + YiV¢(k) (s") - V¢(k) (s). the degree of constraint.

Given data collected by Ty (k) » We learn the policy 7, by mini-
1
mizing its KL divergence from the optimal policy 7*:

6" — argminE, ) [DkL(x"(19)]lmo(15))]
1

(k)

m A
g, (als) Zml,l- Al
= L j=2 7]
argmng”(afk) [g(ne(k)(ab)) ’ = Z;.":Z)Lj logﬂg(als)].
= 1
(10)




Two-stage Constrained Actor-Critic

Algorithm 1: Two-Stage Constrained Actor Critic

Stage One: For each auxiliary response i = 2,...,m, learn a
policy to optimize the response i, with 7y, denoting actor
and Vj, for critic.

While not converged, at iteration k:

gy argminBr e [(r,-(s, A +1iV,m (s") - V¢(S))2]’

k k

91.( L) —arg mgx]E,,e.(k) [Al( ) log (n:g(a|s))].

Stage Two: For the main response, learn a policy to both
optimize the main response and restrict its domain close to
the policies {7y, }]", of auxiliary responses, with 7,
denoting actor and Vs, for critic.

While not converged, at iteration k:

(k) arg minEy |(ri(s.@) + 11V L0 () =V )’
1 1

m . g (als) \rin
0%+  aromaxR [ (9"—)271:2'11’
1 g1 ”91(") n ﬂefk)(a|3)
A

Xexp( ml )logn'g(als)].
=2 ’11'

Output: the constrained policy 7y.




Live Experiments

* Baselines and Our Algorithms

e A3C(basic RL version)
e A RL algorithm to optimize the weighted reward, with y = 0.95

 RCPO-A3C(Multi-critic Policy Optimization)
* Learning two critic to evaluate the time and the interactions
e Optimize the actor by the weighted sum of advantages of two objectives

* Two-Stage constrained A3C (Ours)
e Stage 1: we learn a A3C policy to optimize the interactions
e Stage 2: we learning a policy following Eq(10).

 CEM(Baseline)



Live Experiments

Algorithm ‘ WatchTime | Share | Download | Comment
A3C +0.309% —0.707% 0.153% -1.313%
RCPO-A3C +0.283% —-1.075% | —0.519% | —0.773%

Interaction-A3C +0.117% +5.008% | +1.952% -0.101%
Constrained-A3C +0.336% +3.324% | +1.785% | —0.618%

Table 2: Performance of different algorithms relative to a
supervised LTR baseline in a live experiment.
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Figure 3: Learning curve of Contrained-Time-A3C. The blue
and orange lines show its live performance on WatchTime and
Share as compared to a supervised LTR baseline.



Exploration for Kuaishou RS



RND as Exploration

* Exploration
* Crucial for RL
* Simply improving entropy of policy does not improve performance
* Random exploration hurts user experience

* RND(Random Network Distillation)
* Estimate the novelty of each state @ @ @
* Higher frequency, lower novelty

* Two same networks

gradie\nt
* One random initialized \‘
* The other one learns to fit one Fixed Dnn Dnn
* Loss and Exploration reward v
min || fy(s) - Fos(3)|13 ~ feature |

reward = 1. + || fo(s) — foc(3)||5



RND as Exploration

* Training
* Loss decreases with training

* Live Experiments

e Baseline: Basic RL Version
* Avg app time +0.231% Watch time +0.476% follow -1.96% VV +0.07%
* Fully launched




Future Directions



Future Directions

* Exploration in large-scale action spaces
* How to ensure safe exploration?
* Efficient explorations

* Multi-agent Reinforcement Learning in RS
 Different agent maximizes different signals
* Different agent works in different phases of the recommend systems

* Counterfactual Reinforcement Learning in RS
* Unbiased evaluation of a RL policy in RS
* Credit assignment of a long-term delayed signal to each immediate steps



Thank you!



