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ABSTRACT
Ranking algorithms of e-commerce sites take the buyer’s search
query and information of the corresponding sellers’ items as input,
and output a ranking of sellers’ items that maximizes sites’ objec-
tives. However, the conversion rate of each item (i.e., the probability
of a completed transaction) not only depends on the ranking given
by the site (which controls click-through rates), but also depends on
the item price set by its seller(which controls the buyer’s willingness
to buy). As a result, a ranking algorithm is in fact a mechanism that
deals with sellers who strategically set item prices.

An interesting fact about this setting, at least the status quo for
the largest e-commerce sites such as Taobao, Amazon, and eBay, is
that sellers are usually not given the option to report their private
costs but can only communicate with the site by setting item prices.
In terms of mechanism design, this is a setting where the designer is
restricted to design a specific type of indirect mechanisms.

We follow the framework of implementing optimal direct mecha-
nisms by indirect mechanisms to tackle this optimal indirect ranking
mechanism design problem. We firstly define a related optimal direct
ranking mechanism design setting and use Myerson’s characteriza-
tion to optimize in that setting. We then characterize the class of
direct mechanisms which could be implemented by indirect mecha-
nisms, and construct a mapping that maps the mechanisms designed
in the previous direct setting to indirect mechanisms in the original
setting where sellers are allowed only to set item prices. We show
that, using this technique, one can obtain mechanisms in the indirect
setting that maximize expected total trading volume. We then present
the mechanism employed by one of the largest e-commerce websites
currently, get a Bayesian Nash Equilibrium of it and obtain the gap
of the volume of the site’s mechanism and the optimal mechanism.
Given real dataset from the site, we also simulate our optimal mech-
anism and the site’s mechanism, and it shows that our mechanism
outperforms the site’s mechanism significantly.
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1 INTRODUCTION
When a buyer types a search query on an e-commerce site, the site
is called a ranking algorithm that sorts all the sellers’ items that
match the search query and displays the ranked list to the buyer. This
ranking is crucial for the sellers, because higher rankings will lead to
higher click-through rates, a key factor in sellers’ profit. A standard
ranking algorithm prefers sellers with higher reputations, the number
of completed historical transactions and lower item prices. From a
seller’s point of view, on the one hand, she would like to set a lower
price, that yields a good ranking and attracts more transactions that
lead to better future rankings; on the other hand, she would like
to raise the price for better profit. The current design of ranking
algorithms on e-commerce sites makes these details very obscure
and difficult for sellers to optimize her own utility. As a result, it
is widely observed from data on these sites that the prices fluctuate
frequently and new sellers have to set very low prices in order to
attract more buyer impressions1.

In this paper, we investigate the design of ranking algorithms from
a mechanism design perspective. We model the problem as a variant
of one-shot sponsored search auction problem and aim to incentivize
the sellers to set prices appropriately in order to maximize the site’s
objectives, such as the total trading volume. For a related problem on
how to prevent the sellers from manipulating reputation scores and
the number of transactions, see a recent mechanism design approach
proposed by [4].

As mentioned in the abstract, an interesting fact about the e-
commerce setting, different from any auction setting, is that sellers
are usually not given the option to report their private types, which
are normally their costs for producing the items, but can only commu-
nicate with the site by setting item prices. This renders our problem
an instance of indirect mechanism design.

Our work falls under the umbrella of implementing optimal direct
mechanisms by indirect mechanisms. In the auction design literature,
a line of work considers the problem where bidders are only allowed
to report several discrete bid levels [2, 3, 18, 21], even though they
have a continuous type space. [12] present a class of winners-pay-bid
mechanisms where there exist simple and nontruthful equilibria in
Internet advertising. As a result, the design problem also becomes
indirect. Note that the set of prices sellers could post is not restricted
in our setting, and the utility of each seller does not only rely on
the allocation and the transfer, but also depends on the conversion
rate that is decided by the action she chooses, which means that
their characterizations of the class of direct mechanisms which can

1Back to 2015, there was a very famous price competition for a type of tea at Taobao
and eventually the price of a box of tea, which was normally worth more than 20 dollars,
lowered to 1 dollar.



be implemented by indirect mechanisms can not be applied in our
setting.

In this paper, we aim to design indirect mechanisms that imple-
ment the site’s objectives at their (nontruthful) Bayes Nash equi-
libria(BNE) [13, 20], called total trading volume, which most e-
commerce websites care most. Our first contribution is that we
construct a related direct mechanism design setting and use Myer-
son’s characterization [19, 22] to optimize in that setting. We then
construct a mapping that maps the mechanisms designed in the pre-
vious direct setting to indirect mechanisms in the original setting
where sellers are allowed only to set item prices and characterize
the class of direct mechanisms which could be implemented by indi-
rect mechanisms. Our second contribution is that we obtain optimal
mechanisms in this indirect setting in terms of the expected total
trading volume and BNE of these mechanisms are simple functions.
Our third contribution is that we obtain a simple BNE of the mech-
anism employed by one of the largest e-commerce websites in the
world and the gap of volume between it and the optimal mechanism.
The other contribution is that we simulate the optimal mechanism
and compare it with the site’s mechanism based on a dataset from
the site, which shows our mechanism performs significantly better
than the site’s mechanism.

1.1 Related work
It is necessary to compare our setting with the well-studied sponsored
search setting [7, 10, 17], in which the outcome of the mechanism is
also rankings of slots and transfers of agents. However, besides the
difference about the spaces of reporting, most of sponsored search
literature focuses on objectives of revenue and social welfare, our
setting is the first work that considers maximizing the expected total
trading volume to the best of our knowledge. We introduce a direct
mechanism problem which is related to our problem and show the
convertibility of it to the traditional sponsored search auction.

We are not the first to study mechanism design in e-commerce and
reputation sites. A line of work [8, 14–16] study how to incentivize
the buyers to leave truthful feedbacks. [4], mentioned before, con-
sider the problem that sellers manipulating their reputation scores by
creating fake transactions and designing truthful mechanisms that
maximize social welfare. [5] consider a multiple rounds version of
our problem and tackle it by a approach of reinforcement mecha-
nism design [6, 23]. [24] consider reputation systems with strategic
buyers and sellers. [1] consider the setting that buyers and sellers
trade through intermediaries.

2 THE SETTING
In a typical e-commerce setting, a ranking mechanism ranks m
sellers over n slots, and each one sells a different item that matches
the same buyer query. Each seller i has a private cost ci for his item.
The prior distribution of ci is independently drawn from Fi [0,hi ].
Let fi (ci ) denote the probability density function of seller i, f (c ) =∏m

i=1 fi (ci ) denote the joint probability density of c and f−i (c−i )
denote the joint probability density of c−i . The buyer’s valuation
towards seller i’item is a uniform distribution on [0,hi ]. 2 Each seller
i sets a take-it-or-leave-it price pi for the buyer.

2We make the uniform valuation assumption for ease of presentation. The approach and
analysis extend straightforwardly to any valuation.

A ranking mechanism f takes as input the posted prices p of all
sellers, and outputs a ranking of these sellers in the result page for
the buyer. Let xi j denote the probability that seller i is ranked in
j-th slot. The probability that the buyer clicks on seller i’s item is
denoted by αi j

3.
Given a ranking x , the expected probability that the buyer clicks

seller i’s item is qi =
∑n
j=1 αi jxi j . A ranking x is feasible if it

satisfies the following constraints

∀i∀j, 0 ≤ xi j ≤ 1.

∀j,
m∑
i=1

xi j ≤ 1.

∀i,
n∑
j=1

xi j ≤ 1.

Upon receiving the price vector p set by all sellers, a mechanism
must return a ranking x (p) and a transfer t (p). Let xi j (p) denote the
probability that seller i is assigned to slot j and ti (p)

4 denote the
transfer seller i makes to the mechanism. Given a mechanism f and
sellers’ prices p, the utility of seller i with a type ci is

ui (ci ,p) =
n∑
j=1

αi jxi j (p) (hi − pi )
+ (pi − ci )/hi − ti (p).

(hi − pi )
+/hi means max

{
0,hi − pi

}
/hi , which denotes the con-

version rate of seller i given a price pi . That is, the utility of a seller
equals the difference between the expected profit(the product of the
probability that the buyer clicks seller i’ item, the conversion rate,
and revenue of a seller selling one item) and the money paid to the
designer.

The description so far prevents us from designing a direct mecha-
nism since the sellers are not allowed to report their private costs. As
a result, we hope to design indirect mechanisms whose interim in-
dividual rational bayesian nash equilibria(IIR-BNE) yield desirable
the expected total trading volume for the designer.

Definition 2.1. Given a mechanism f , an interim individual ratio-
nal bayesian nash equilibrium (IIR-BNE) is a profile of strategies
s that maps each seller’s type to a price. Let si (ci ) denote the strat-
egy function of seller i, s−i (c−i ) denote the posted prices of sellers
except from seller i when sellers follow strategies s−i . Let

Ui (ci ,pi ) =

∫
ui (ci , (pi , s−i (c−i ))) f−i (c−i )dc−i

be the interim utility of a seller i with type ci who sets a price pi ,
when others follow the strategies s−i . s is called an IIR-BNE if and
only if each seller gets the maximum interim utility if she follows
strategy si with others following the equilibrium and each seller gets
non negative interim utility in this IIR-BNE:

∀i∀ci∀pi ,Ui (ci , si (ci )) ≥ Ui (ci ,pi ).

3We assume the click-through rates is independent of posted prices of sellers, which
is a standard assumption in sponsored search auction setting. The main results of this
paper hold without this assumption trivially.
4A positive transfer means that the seller pays a commission fee to the site, otherwise
the site reimburses the seller.



∀i∀ci ,Ui (ci , si (ci )) ≥ 0.

Our objective is to find a feasible mechanism with at least an
IIR-BNE that maximizes the expected total trading volume. As a
mechanism may have multiple IIR-BNE, we define a mechanism’s
volume as the maximum expected total trading volume among all
IIR-BNE of this mechanism.

Definition 2.2. Given a mechanism f with at least an IIR-BNE,
let S denote the set of all IIR-BNE where the posted price for any
seller is no less than its cost, then its volume is

maxs ∈S

∫ m∑
i=1

n∑
j=1

αi jxi j (s (c ))

(hi − si (ci ))
+si (ci ) f (c )/hidc .

The reason why we only consider those IIR-BNE where the
posted price for any seller is no less than its cost is that, without
this restriction, one can design a trivial mechanism as follows: rank
these sellers in descending order of the expected trading volume,
and pay these sellers sufficiently to ensure IIR. There is an unique
BNE, si (ci ) = hi/2, and the mechanism is optimal. Obviously this
mechanism is not practical, the site needs to reimburse to sellers.

To make the analysis easier to follow, we firstly design optimal
direct mechanisms in a related setting, then use these direct mecha-
nisms to construct optimal indirect mechanisms.

3 A RELATED DIRECT MECHANISM
DESIGN SETTING

In this section we present a related direct mechanism design setting,
and design optimal mechanisms. The major difference between this
setting and previous setting is that sellers report their costs directly to
the mechanism, and the mechanism decides prices for sellers rather
than letting sellers posting prices.

A direct mechanism д takes the reported costs of items c as input,
outputs an allocation x (c ), a vector of prices p (c ) and a vector of
transfers t (c ). Given a mechanism д and reported prices c

′

, the utility
of seller i with a type ci reporting type c

′

i is

ui (ci , c
′

) =
n∑
j=1

αi jxi j (c
′

) (hi − pi (c
′

))
+

(pi (c
′

) − ci )/hi − ti (c
′

).

There are some properties that a direct mechanism satisfies.

Definition 3.1. Feasibility. A mechanism is feasible if it satisfies
the following constraints

∀i∀j∀c
′

, 0 ≤ xi j (c
′

) ≤ 1.

∀j∀c
′

,

m∑
i=1

xi j (c
′

) ≤ 1.

∀i∀c
′

,

n∑
j=1

xi j (c
′

) ≤ 1.

∀i∀c
′

,pi (c
′

) ≥ c
′

i .

Definition 3.2. BIC(Bayesian incentive compatible).
For any seller, telling the truth will get the maximum interim

utility with others reporting costs truthfully, i.e.

Ui (ci , c
′

i ) =

∫
ui (ci , (c

′

i , c−i )) f−i (c−i )dc−i ,

∀i∀ci∀c
′

i ,Ui (ci , ci ) ≥ Ui (ci , c
′

i ).

Definition 3.3. IIR(Interim individual rational).
For any seller, telling the truth will get non-negative interim utility

when others report costs truthfully, i.e.

∀i∀ci ,Ui (ci , ci ) ≥ 0.

Our objective in this setting is to find an optimal mechanism with
feasibility, BIC and IIR property that maximizes the volume.

Definition 3.4. Given a BIC and IIR mechanism д, д’s volume is∫ m∑
i=1

n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+pi (c ) f (c )/hidc .

We get necessary and sufficient conditions of BIC and IIR by
applying Myseron’s approach in [19].

THEOREM 3.5. Let

Bi (ai ) =

∫ n∑
j=1

αi jxi j (ai , c−i )

(hi − pi (ai , c−i ))
+ f−i (c−i )/hidc−i ,

i.e. the expected probability of the buyer purchasing seller i’s item
when he reports ai and others report costs truthfully. A mechanism
is BIC and IIR if and only if for all i, Bi (ci ) is non-increasing on ci
and

∀i∀ci ,
dUi (ci , ci )

dci
= −Bi (ci ). (1)

∀i,Ui (hi ,hi ) ≥ 0. (2)

PROOF. If a mechanism is BIC and IIR, the property (2) is di-
rectly from IIR. For all i and ci , let c

′

i = ci + δc (δc > 0). By BIC,
we have that

Ui (ci , ci ) ≥ Ui (ci , c
′

i ),

Ui (c
′

i , c
′

i ) ≥ Ui (c
′

i , ci ).

Let

Ai (ci ) =

∫ n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+

pi (c ) f−i (c−i )/hidc−i ,

Ti (ci ) =

∫
ti (ci , c−i ) f−i (c−i )dc−i .

From above formulas,

Ai (ci ) −Ti (ci ) − Bi (ci )ci ≥ Ai (c
′

i ) −Ti (c
′

i ) − Bi (c
′

i )ci ,

Ai (c
′

i ) −Ti (c
′

i ) − Bi (c
′

i )c
′

i ≥ Ai (ci ) −Ti (ci ) − Bi (ci )c
′

i .

Then we can get

−Bi (ci ) ≤
Ui (c

′

i , c
′

i ) −Ui (ci , ci )

δc
≤ −Bi (c

′

i ).



We get Bi (ci ) is non-increasing on ci , by taking the limit of this
formula on δc in two sides, we can get the equation (1) and the
equation (2).

On the other hand, If a mechanism д satisfies these properties, by
the equation (1) and the equation (2), the interim utility of a seller
telling the truth when others tell the truth is non-negative, thus д is
IIR. BIC is equivalent to

∀i∀ci∀c
′

i ,Ui (ci , ci ) ≥ Ui (c
′

i , c
′

i ) + B (c
′

i ) (c
′

i − ci ).

As the mechanism satisfies the equation (1) and Bi (ci ) is non-
increasing on ci , the above inequality holds and д is BIC. □

3.1 Optimal direct mechanism that maximizes
volume

In this section, we present the optimal direct ranking mechanism
(ODRM). By recalling the definition, any direct mechanism’s volume
is

∫ m∑
i=1

n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+pi (c ) f (c )/hidc .

We optimize volume by maximizing the total trading volume point-
wise and construct a transfer rule that makes the mechanism BIC
and IIR. By the definition of feasibility, for any seller i and any
input type profile c, pi (c ) ≥ ci . In ODRM, each seller i’s price is
set as hi/2 if ci ≤ hi/2 otherwise the price is set as ci to maximize
(hi − pi (c ))

+pi (c ). The allocation x (c ) of any input type profile c is
calculated by this linear programming:

maxx (c )

m∑
i=1

n∑
j=1

αi jxi j (c )
(hi − pi (c ))

+pi (c )

hi

∀i∀j, 0 ≤ xi j (c ) ≤ 1.

∀j,
m∑
i=1

xi j (c ) ≤ 1.

∀i,
n∑
j=1

xi j (c ) ≤ 1.

(3)

Note that all hi ,pi (ci ) in linear programming (3) are constant, if
we replace (hi − pi (c ))

+pi (c )/hi to a new variable vi , then (3) is
indeed a problem in the sponsored search auction, whose goal is
allocative efficiency[20]. As shown in [20], this linear programming
is equivalent to the maximum-weight perfect matching in a bipartite
graph, which is solvable in O ((m + n)3) [9].

To ensure BIC and IIR, we letUi (hi ,hi ) = 0 becauseUi (hi ,hi ) ≥
0 and the mechanism pays the minimum expected money if it equals
to 0, i.e.

∀i∀ci ,Ui (ci , ci ) −

∫ hi

ci
Bi (ai )dai = 0. (4)

Then by the definition of Ui (ci , ci ),∫
ti (ci , c−i ) f−i (c−i )dc−i =

∫ n∑
j=1

αi jxi j (ci , c−i )

(hi − pi (c ))
+ (pi (ci , c−i ) − ci )

f−i (c−i )/hidc−i

−

∫ hi

ci
Bi (ai )dai .

By the definition of function Bi ,∫ hi

ci
Bi (ai )dai =

∫ hi

ci

∫ n∑
j=1

αi jxi j (ai , c−i )

(hi − pi (ai , c−i ))
+ f−i (c−i )/hidc−idai .

If we let

∀i∀c, ti (ci , c−i ) =
n∑
j=1

αi jxi j (ci , c−i ) (hi − pi (c ))
+

(pi (ci , c−i ) − ci )/hi −

∫ hi

ci

n∑
j=1

αi j

xi j (ai , c−i ) (hi − pi (ai , c−i ))
+ fi (ai )/hidai ,

(5)

(4) holds.
Now we prove that ODRM is BIC and IIR. Firstly we prove that

each seller’s clicked probability decreases as reported cost increases
by the following lemma.

LEMMA 3.6. For any output ranking of ODRM with any input
profile c

′

, let qi (c
′

) =
∑n
j=1 αi jxi j (c

′

), then

∀i∀c
′

−i∀c
′

i∀ci (c
′

i ≥ ci ),qi (ci , c
′

−i ) ≥ qi (c
′

i , c
′

−i ).

PROOF. By contradiction, we assume there exist some ci , c
′

−i and
c
′

i ≥ ci , such that qi (ci , c
′

−i ) < qi (c
′

i , c
′

−i ). Let S1 denote the set of
feasible rankings x

′

that satisfies

∀j,x
′

i j = xi j (ci , c
′

−i )

and S2 denote the set of feasible rankings x
′

that satisfies

∀j,x
′

i j = xi j (c
′

i , c
′

−i ).

Let wi (ci ) = (hi − pi (c ))
+pi (c )/hi , by the definition of the alloca-

tion,

qi (ci , c
′

−i )wi (ci ) +maxx ′ ∈S1

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ) ≥

qi (c
′

i , c
′

−i )wi (ci ) +maxx ′ ∈S2

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ),

and

qi (ci , c
′

−i ) < qi (c
′

i , c
′

−i )

wi (ci , c
′

−i ) ≥ wi (c
′

i , c
′

−i ),

we get



qi (ci , c
′

−i )wi (c
′

i ) +maxx ′ ∈S1

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ) >

qi (c
′

i , c
′

−i )wi (c
′

i ) +maxx ′ ∈S2

∑
k,i

n∑
j=1

αk jx
′

k jwk (c
′

k ).

That is, x (c
′

i , c
′

−i ) is not the ranking with the maximum volume
for input profile (c

′

i , c
′

−i ), which contradicts the assumption. □

From these facts of each seller i’s the expected clicked probability
and pi (ci ) are non-increasing as ci increases and pi (ci ) is larger than
hi/2, we obtain that function Bi (ci ) is monotone non-increasing as
ci increases. As the transfer rule is defined by (5), ODRM satisfies
(1) and (2). By Theorem 1, we come to the conclusion that this
mechanism is BIC, IIR and feasible.

4 INDIRECT MECHANISMS
In this section we establish the connections between indirect mecha-
nisms with at least an IIR-BNE in the original setting and IIR, BIC
and direct mechanisms in the related setting. Then we use this con-
nection to construct the optimal indirect ranking mechanism(OIRM)
that implements ODRM. We begin transformations in one direction
with the following lemma with the idea of revelation principle.

LEMMA 4.1. For any indirect mechanism f with at least an
IIR-BNE, let x denote the allocation function, t denote the transfer
function of f . For any IIR-BNE s of f , we define a direct mechanism
д with allocation funtion x

′

, pricing fuction p and transfer function
t
′

that satisfies

∀i∀j∀c,x
′

i j (c ) = xi j (s (c ))

∀i∀c,p
′

i (c ) = si (ci )

∀i∀c, t
′

i (c ) = ti (s (c )),

then д is IIR, BIC and for any input type profile, the allocation,
the prices, and the transfers of f in the BNE are the same with those
of д.

PROOF. It suffices to prove that mechanism д is IIR and BIC. For
any seller i, LetUi (д, ci , c

′

i ) denote the interim utility of seller i with
type ci reporting c

′

i when others tell the truth in mechanism д, and
Ui ( f , ci ,pi ) denote the interim utility of seller i with type ci posting
the price pi when others follow the strategies s−i in mechanism f .
By the construction of д,

∀i∀ci ,Ui (д, ci , c
′

i ) = Ui ( f , ci , si (c
′

i )).

By the definition of s,

∀i∀ci ,Ui ( f , ci , si (ci )) ≥ Ui ( f , ci , si (c
′

i )).

Then ∀i∀ci ,Ui (д, ci , ci ) ≥ Ui (д, ci , c
′

i ). Thus mechanism д is BIC.
Because s is an IIR-BNE,

∀i∀ci ,Ui ( f , ci , si (ci )) ≥ 0.

We have ∀i∀ci ,Ui (д, ci , ci ) ≥ 0, making д is IIR. □

The above lemma states that the optimal indirect mechanism’s
volume is less than that of the optimal direct mechanism.

Conversely, we characterize the class of IIR, BIC and direct
mechanisms which can be implemented by indirect mechanisms.

Definition 4.2. Given a direct mechanism д, we define function
Gi and Di for each seller i,

Gi (ci ) =

∫ n∑
j=1

αi jxi j (c ) (hi − pi (c ))
+ (pi (c ) − ci )

f−i (c−i )dc−i/

∫ n∑
j=1

αi jxi j (c ) f−i (c−i )dc−i .

(6)

Di (ci ) =
hi + ci +

√
(hi − ci )

2 − 4Gi (ci )

2
. (7)

A mechanism is invertible if

∀c, c
′

(∀i,Di (ci ) = Di (c
′

i )),x (c
′

) = x (c )

∀c, c
′

(∀i,Di (ci ) = Di (c
′

i )), t (c
′

) = t (c ).

That is, an invertible mechanism should satisfy the property: for
any c, the outcome of this mechanism on two inputs c and c

′

such that
Di (ci ) = Di (c

′

i ) for each seller i are the same. Note that this class
contains many mechanisms, as a direct mechanism with monotone
price function pi (c ) which only depends on ci

5 for each seller i is
within this class.

For any IIR and BIC mechanism, we prove that a mechanism
is invertible if and only if there exists an indirect mechanism that
implements it.

LEMMA 4.3. For any IIR ,BIC and direct mechanism д with the
allocation function x , the pricing function p and the transfer function
t , there exists an indirect mechanism f with the allocation function
x
′

, and the transfer function t
′

where there exists an IIR-BNE s that
satisfies

∀i∀j∀c,x
′

i j (s (c )) = xi j (c )

∀i∀ci , si (ci ) = Di (ci ).

∀i∀c, t
′

i (s (c )) = ti (c ).

and for any type profile, the allocation, the transfer, and interim
utility of sellers of f and д are the same if and only if д is invertible.

PROOF. On the one hand, If д is invertible, it suffices to construct
an indirect mechanism f that satisfies the above conditions. For
each seller i, let Ii ([0,hi ]) be the image of function Di (ci ) on [0,hi ].
Then for each seller i, we define an inverse function of Di , Ci on
the set Ii ([0,hi ]), i.e. ∀a ∈ Ii ([0,hi ]),Di (Ci (a)) = a.6 We define
function

C (p) = (C1 (p1), ...,Cm (pm ))

for any input vector p such that the price of any seller i is in the
domain of Ci .

The allocation and the transfer are designed as follows:

∀i∀j∀p,x
′

i j (p) =

{
xi j (C (p)),pi ∈ Ii ([0,hi ])

0,pi < Ii ([0,hi ])
(8)

5Di (ci ) = pi (c ) and is monotone in this case.
6For any value a ∈ Ii ([0, hi ]) with multiple b ∈ [0, hi ] such that Di (b ) = a, we
choose the smallest one as the value of Ci (a).



∀i∀p, t
′

i (p) =

{
ti (C (p)),pi ∈ Ii ([0,hi ])

0,pi < Ii ([0,hi ])
(9)

If there is another seller j that posts a price that is not in the domain
of Cj , we ignore and remove the seller. Now we prove that s is a
BNE of the mechanism f . Let Ui (д, ci , c

′

i ) denote the interim utility
of seller i with type ci reporting c

′

i in mechanism д, andUi ( f , ci ,pi )
denote the interim utility of seller i with type ci posting the price pi
in mechanism f . It suffices to prove that

∀i∀ci∀pi ,Ui ( f , ci , si (ci )) ≥ Ui ( f , ci ,pi ). (10)

By the construction of f ,

Ui ( f , ci , si (ci )) =

∫
(
n∑
j=1

αi jx
′

i j (D (c )) (hi − Di (ci ))
+ (Di

(ci ) − ci )/hi − t
′

i (D (c )) f−i (c−i )dc−i .

(11)

By the definition of interim utility,

Ui (д, ci , ci ) =

∫
(
n∑
j=1

xi j (c )αi j (hi − pi (ci ))
+

(pi (ci ) − ci )/hi − ti (c )) f−i (c−i )dc−i .

(12)

As mechanism g is invertible,

x
′

i j (D (c )) = xi j (c )

t
′

i (D (c )) = ti (c ).
(13)

Then by (6)(7)(11)(12)(13), we get

Ui ( f , ci , si (ci )) = Ui (д, ci , ci ).

Because mechanism д is IIR, Ui (д, ci , ci ) ≥ 0. If seller i posts a
price pi that is not in the domain ofCi , the interim utility he will get,
Ui ( f , ci ,pi ), is 0. Otherwise

Ui ( f , ci ,pi ) = Ui ( f , ci , si (Ci (pi ))) = Ui (д, ci ,Ci (pi )). (14)

As д is BIC, Ui (д, ci , ci ) ≥ Ui (д, ci ,Ci (pi )). Thus (10) holds, and in
the BNE each seller gets non-negative interim utility.

On the other hand, if there exists an indirect mechanism f that
implements mechanism д, by the definition of f , we have

∀c,x
′

(D (c )) = x (c )

∀c, t
′

(D (c )) = t (c ).

If there exists c
′

such that D (c
′

) = D (c ), it is natural to get that
x (c ) = x (c

′

) and t (c ) = t (c
′

).
□

4.1 Optimal indirect mechanism that maximizes
volume

In ODRM, the value of Di (ci ) for any seller i is hi/2 if the reported
price is less than hi/2, otherwise the value is ci . ODRM is not
invertible because a seller reporting cost ci and c

′

i such that Di (ci ) =

Di (c
′

i ) ≤ hi/2 may get a different fraction of the buyer impression
and pay different money. We are not able to use the technique in
the proof of Lemma 4.3 directly. Here we present a class of BIC,
IIR, invertible and direct mechanisms which are parameterized by
a constant η(0 < η ≤ 1). If we let η approach to 0, its volume
approaches to the optimum.

MECHANISM η-OPTIMAL. For each value of η(0 < η ≤ 1), the
price function of each seller i is

pi (ci , c
′

−i ) =

{
ηci + (1 − η)hi/2, ci ≤ hi/2

ci , ci > hi/2

}
,

the transfer function is the same as (5) and the allocation is calcu-
lated by (3).

THEOREM 4.4. For any choice of η ∈ (0, 1], mechanism η-
optimal is BIC, IIR, invertible, and mechanism η-optimal’s volume
approaches to that of ODRM as η approaches to 0.

PROOF. For each value of η ∈ (0, 1], by definition, qi (ci , c−i )
decreases as the reported cost ci increases and the posted price func-
tion is increasing as the reported cost increases. Thus the probability
that the item of each seller is purchased is monotone decreasing with
his reported cost. As the transfer rule of the mechanism satisfies the
equation (5) and the mechanism satisfies (1) and (2), by Theorem 1,
we get that the mechanism is IIR and BIC.

By definition, the function Di (ci ) is strictly monotone increasing
with the reported cost, for any c, C (D (c )) = c, the mechanism is
invertible.

For any type profile, the allocation of mechanism η-optimal and
the prices mechanism η-optimal sets approaches to that of ODRM
as η approaches to 0. By definition, mechanism η-optimal’s volume
approaches to that of ODRM as η approaches to 0. □

We can use (8) and (9) to acquire a class of indirect mechanisms
called OIRM that maximize volume with at least an IIR-BNE pa-
rameterized by η, and its volume approaches to that of ODRM.

5 THE SITE’S MECHANISM
In this section, we present the mechanism applied by one of the
largest websites in the world, denoted by S, and we obtain a sim-
ple BNE of the mechanism with the assumption of i.i.d uniform
distribution U (0, 1) of costs.

MECHANISM S. The mechanism ranks the sellers according to
the weighted volume pi (hi − pi )+/hi by descending order and does
not use the transfer.

By definition of S, it does not use the transfer to ensure the
incentive for sellers. Thus it’s natural to ask whether there exists
a simple BNE of the mechanism or not. We consider the case that
items of sellers are the same and the cost distributions of all sellers
are i.i.d drawn from the uniform distribution U (0, 1) and there is
one slot to be allocated. For the ease of notations, we let α11 = .. =
αm1 = 1. Let s denote the BNE of S. By LEMMA 4.1. We get a
direct mechanism д that satisfies BIC and IIR. Applying the results
of equation (1) in THEOREM 3.5, we get that for any seller i and
any cost ci ,
dsi (ci )
dci

(2si (ci ) − ci − 1)Qi (ci ) =
dQi (ci )

dci
(1 − si (ci )) (si (ci ) − ci ),

(15)
where

Qi (ci ) =

∫
xi1 (si (ci ), s−i (c−i )) f−i (c−i )dc−i .

Firstly we get some properties of the strategy function of each
seller i.



LEMMA 5.1. If s is a BNE of S, for any seller i and any type
ci ∈ [0, 1],

1/2 ≤ si (ci ) ≤ (1 + ci )/2.

PROOF. By the definition of the interim utility,

Ui ( f , ci ,pi ) =

∫
xi1 (pi , s−i (c−i )) (1 − pi )+ (pi − ci ) f−i (c−i )dc−i .

As S gives the slot to the seller with posted prices nearest to 1/2,
and the function д(pi ) = (1 − pi )+ (pi − ci ) attains larger value as pi
approaches to (1 + ci )/2.

Firstly we get that for any i and ci , si (ci ) ≥ 1/2, otherwise
the seller posting a price 1/2 will get more fraction of buyer im-
pression, i.e. xi1 (pi , s−i (c−i )), more revenue selling one item, i.e.
(1 − pi )+ (pi − ci ) and get more interim utility because 1/2 is closer
to 1/2 and (1 + ci )/2 than si (ci ).

Secondly for any i and ci , si (ci ) ≤ (1 + ci )/2, otherwise let
pi = 1 + ci − si (ci ), the seller posting the price pi will get more
fraction of buyer impression as pi is closer to 1/2 than si (ci ) and the
same revenue selling one item because the distance between pi and
(1 + ci )/2 is the same as the distance between si (ci ) and (1 + ci )/2,
and get more interim utility. □

To get the close form of function Qi (ci ), we assume that the
strategy function of each seller is monotone non-decreasing and
symmetric. By LEMMA 5.1, the posted price of the seller with the
minimum cost is closest to 1/2, which means that for any type profile
c, S gives the slot to the seller with the minimum cost. Thus Qi (ci )
is the expected probability that ci is the minimum cost among all
sellers, i.e. (1−ci )m−1. By solving the differential equation (15), we
get that

si (ci ) =
mci + 1
m + 1

.

It is not hard to verify that these functions are symmetric and mono-
tone non-decreasing. Combining this equation with LEMMA 5.1,
we get the BNE of S.

THEOREM 5.2. Let

si (ci ) =



1/2 0 ≤ ci <
m−1
2m

mci+1
m+1

m−1
2m ≤ ci ≤ 1

,

then s is a BNE of S.

PROOF. It suffices to prove that si (ci ) is the best response of
seller i with cost ci when others follow s−i . For any seller i, If
others following the strategies s−i , others’s posted prices is 1/2 with
probability m−1

2m , and a uniform distribution U (1/2, 1) with density
m+1
m . We only need to consider the case that pi ≥ 1/2 by LEMMA

5.1, the seller’s expected clicked probability is ((1 − pi )m+1m )
m−1.

The interim utility of seller i with cost ci posting a price pi is

Ui ( f , ci ,pi ) = (1 − pi ) (pi − ci ) ((1 − pi )
m + 1
m

)
m−1
. (16)

It is easy to verify that Ui ( f , ci ,pi ) attains the maximum value
when pi = si (ci ). □

This result explains that why the site uses this mechanism and
gives sellers a simple BNE strategy to follow. Also, we get the gap
between the volume of OIRM mechanism and S. We omit the proof
due to lack of space.

LEMMA 5.3. For any numberm of sellers, we have

Vol (OIRM ) −Vol ( f ) ≥
3m + 2

4(m + 1) (m + 2)
((
m + 1
2m

)
m
− (

1
2
)
m
).

(17)

6 EXPERIMENTAL EVALUATION
Besides the theoretical analysis of S with i.i.d uniform distribution
U (0, 1) of costs and uniform valuation of buyers, we simulate OIRM
and compare its performance with S based on the trading dataset
from one of the largest e-commerce sites in the world.
• Dataset

The relational dataset contains a history of 9354 different
items controlled by different sellers matching a certain key-
word in 64 days. Each record in the dataset contains a daily
record of the number of buyers clicks that an item i received
vi (pi ), the item’s number of transactions ni (pi ), and the price
of the item pi . We delete records that correspond to items that
were not sold even once during 64 days and filter all items
with price lower than 1 RMB7. Then we get a new relational
dataset with 579 sellers. The click-through rates α of these
sellers over different slots is provided by the site.
• Estimate the valuation of buyer

By the assumption that the valuation of interested buyers over
each item i is a uniform distribution U [0,hi ], the conversion
rate(the ratio between the number of transactions and the
number of clicks of this item) given a price i is (hi − pi )+/hi .
We then use linear interpolation to fit parameters hi of each
seller i.
• Estimate the cost distributions

We estimate sellers’ cost distributions according to the dataset
of prices by the following two steps.
1. First, we construct each seller’s price distribution to be
the uniform distribution over the dataset of the prices, called
empirical distribution [11].
2. Second, we assume that sellers’ price distributions compose
a Bayes Nash equilibrium (BNE) in S. So for seller i with
cost ci and price pi , the following first-order condition is
satisfied:

d (x∗ (pi ) (pi − ci ) (hi − pi )
+/hi )

dpi
= 0,

where x∗ (pi ) is the interim clicked probability, i.e.,

x∗ (pi ) =

∫
p−i

n∑
j=1

αi jxi j (pi ,p−i )dp−i .

Note that both x∗ (pi ) and its derivation can be inferred from
the price distributions and the formula above is a linear equa-
tion of ci . So the empirical distribution of ci can be computed
by solving the equation above.
• Simulation and Results

Given buyer valuations and distributions of costs of each
seller, we randomly sample m(100 − 1000) sellers from 579
sellers, and simulate OIRM, S and uniform mechanism for
10000 times, then we calculate these mechanisms’ volume.

7We calculate the sum of trading volume of these items and their effect on volume is
negligible.



Uniform mechanism means each seller gets the same fraction
of buyer imperssions, and pays nothing. So each seller i with
ci will post price arдmaxpi (pi −ci ) (hi −pi )

+/hi to maximize
his expected profit.

Figure 1: Volume per number of sellers

Figure 1 shows the volume of these mechanisms with the
change of the sample size, it illustrates that OIRM outper-
forms S significantly and the volume of the uniform mecha-
nism is inferior compared with other mechanisms. The vol-
ume of OIRM and S increases as the size of the sample
increases while the uniform mechanism does not.
We also simulate OIRM with different parameters η and 100
sellers and calculate the volume and the expected total transfer
of all sellers.

Figure 2: Volume and transfer per η

Figure 2 shows that the volume of OIRM decreases as η
increases, but OIRM always performs better than S for any η.
Also, the expected total transfer of OIRM is positive for any
η, the designer needs not to pay any money.
We randomly sample 50 sellers and calculate the expected
posted prices of each seller i in S, OIRM and each seller’s
optimal price to maximize the expected trading volume given
all buyer impressions, i.e.

arдmaxpipi (hi − pi )
+/hi .

Note that both S and OIRM rank sellers by it, thus the per-
formance of these mechanisms will be better if posted prices
of sellers are closer to optimal prices. We sort these sellers by
the expected trading volume given all buyer impressions. Fig-
ure 3 shows that the posted prices of OIRM and S are larger
than optimal prices for each seller, and the posted prices of
OIRM are closer to optimal prices compared with the posted
prices of S.

Figure 3: Prices of sellers

7 FUTURE WORK
In this paper, we assume that each seller sells an item and the proba-
bility that the buyer clicks on sellers’ items is independent of posted
prices. Future work could consider designing optimal indirect mech-
anisms in the setting where each seller has multiple items or the
clicked probability depends on prices. We consider implementing
OIRM in e-commerce a promising direction.

We get the BNE of the site’s mechanism with the assumption that
the distribution of costs is i.i.d uniform and we only need to allocate
one slot. It’s also important to solve the BNE of the mechanism in a
more general setting.
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