
Reinforcement Mechanism Design for e-commerce
Qingpeng Cai

Tsinghua University
Beijing, China

cqp14@mails.tsinghua.edu.cn

Aris Filos-Ratsikas
University of Oxford

Oxford, United Kingdom
Aris.Filos-Ratsikas@cs.ox.ac.uk

Pingzhong Tang
Tsinghua University

Beijing, China
kenshinping@gmail.com

Yiwei Zhang
University of California, Berkeley
Berkeley, United States of America

zhangyiwei1234567@126.com

ABSTRACT
We study the problem of allocating impressions to sellers in e-
commerce websites, such as Amazon, eBay or Taobao, aiming to
maximize the total revenue generated by the platform. We employ a
general framework of reinforcement mechanism design, which uses
deep reinforcement learning to design efficient algorithms, taking
the strategic behaviour of the sellers into account. Specifically, we
model the impression allocation problem as a Markov decision
process, where the states encode the history of impressions, prices,
transactions and generated revenue and the actions are the possible
impression allocations in each round. To tackle the problem of
continuity and high-dimensionality of states and actions, we adopt
the ideas of the DDPG algorithm to design an actor-critic policy
gradient algorithm which takes advantage of the problem domain
in order to achieve convergence and stability.

We evaluate our proposed algorithm, coined IA(GRU), by com-
paring it against DDPG, as well as several natural heuristics, under
different rationality models for the sellers - we assume that sellers
follow well-known no-regret type strategies which may vary in
their degree of sophistication. We find that IA(GRU) outperforms
all algorithms in terms of the total revenue.

CCS CONCEPTS
•Theory of computation→Algorithmicmechanism design;
• Computing methodologies → Reinforcement learning; •
Applied computing→ Electronic commerce;

KEYWORDS
e-commerce; impression allocation; mechanism design; reinforce-
ment learning

ACM Reference Format:
Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2018.
Reinforcement Mechanism Design for e-commerce. InWWW 2018: The 2018
Web Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3178876.3186039

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04..
https://doi.org/10.1145/3178876.3186039

1 INTRODUCTION
A fundamental problem that all e-commerce websites are faced
with is to decide how to allocate the buyer impressions to the
potential sellers. When a buyer searches a keyword such as “iPhone
7 rose gold”, the platform will return a ranking of different sellers
providing an item that fits the keyword, with different prices and
different historical sale records. The goal of the platform is to come
up with algorithms that will allocate the impressions to the most
appropriate sellers, eventually generating more revenue from the
transactions.

This setting can be modeled as a resource allocation problem
over a sequence of rounds, where in each round, buyers arrive, the
algorithm inputs the historical records of the sellers and their prices
and outputs such an allocation of impressions. The sellers and the
buyers carry out their transactions and the historical records are
updated. In reality, most e-commerce websites employ a class of
heuristic algorithms, such as collaborative filtering or content based
filtering [34], many of which rank sellers in terms of “historical
scores” calculated based on the transaction history of the sellers
with buyers of similar characteristics.

However, this approach does not typically take into account
the fact that sellers strategize with the choice of prices, as certain
sub-optimal prices in one round might affect the record histories
of sellers in subsequent rounds, yielding more revenue for them in
the long run. Even worse, since the sellers are usually not aware
of the algorithm in use, they might “explore” with their pricing
schemes, rendering the system uncontrollable at times. It seems
natural that a more sophisticated approach that takes all these
factors into account should be in place.

In the presence of strategic or rational individuals, the field of
mechanism design [29] has provided a concrete toolbox for manag-
ing or preventing the ill effects of selfish behaviour and achieving
desirable objectives. Its main principle is the design of systems in
such a way that the strategic behaviour of the participants will
lead to outcomes that are aligned with the goals of the society, or
the objectives of the designer. Cai et al. [10] tackle the problem of
faking transactions and fraudulent seller behaviour in e-commerce
using the tools from the field of mechanism design. A common de-
nominator in most of the classical work in economics is that the
participants have access to either full information or some distri-
butional estimate of the preferences of others. However, in large
and constantly evolving systems like e-commerce websites, the
participants interact with the environment in various ways, and

https://doi.org/10.1145/3178876.3186039
https://doi.org/10.1145/3178876.3186039

adjust their own strategies accordingly and dynamically [32]. In
addition to that, their rationality levels are often bounded by either
computational or financial constraints, or even cognitive limitations
[35].

For the reasons mentioned above, a large recent body of work has
advocated that other types of agent behaviour, based on learning
and exploration, are perhaps more appropriate for such large-scale
online problems encountered in reality [13, 18–21, 28, 32, 33]. In
turn, this generates a requirement for new algorithmic techniques
for solving those problems. Our approach is to use techniques from
deep reinforcement learning for solving the problem of the impres-
sion allocation to sellers, given their selfish nature. In other words,
given a rationality model for the sellers, we design reinforcement
learning algorithms that take this model into account and solve the
impression allocation problem efficiently. This general approach is
called reinforcement mechanism design [11, 36, 40], and we can view
our contribution in this paper as an instance of this framework.

No-regret learning as agent rationality
As mentioned earlier, the strong informational assumptions of clas-
sical mechanism design are arguably unrealistic in complex and
dynamic systems, like diverse online marketplaces. Such repeated
game formulations typically require that the participants know the
values of their competitors (or that they can estimate them pretty
accurately based on known prior distributions) and that they can
compute their payoff-maximizing strategies over a long sequence
of rounds. Such tasks are usually computationally burdensome and
require strong cognitive assumptions, as the participants would
have to reason about the future, against all possible choices of their
opponents, and in a constantly evolving environment.

Given this motivation, an alternative approach in the forefront
of much of the recent literature in algorithmic mechanism design is
to assume that the agents follow some type of no-regret strategies;
the agent picks a probability mixture over actions at each round
and based on the generated payoffs, it updates the probabilities
accordingly, minimizing the long-term regret. This is more eas-
ily conceivable, since the agents only have to reason about their
own strategies and their interaction with the environment, and
there is a plethora of no-regret algorithms at their disposal. Pre-
cisely the same argument has been made in several recent works
[13, 21, 28, 32, 33] that study popular auction settings under the
same rationality assumptions of no-regret, or similar types. In fact,
there exist data from Microsoft’s Ad Actions which suggest that
advertisers do use no-regret algorithms for their actions [41]. For a
more detailed discussion on related rationality models, the reader
is referred to [18].

The seller rationality model: To model the different sophistica-
tion levels of sellers, we consider four different models of rationality,
based on well-established no-regret learning approaches. The first
two, ϵ-Greedy [43] and ϵ-First are known as semi-uniform meth-
ods, because they maintain a distinction between exploration and
exploitation. The later is often referred to as “A/B testing” and is
widely used in practice [9, 12]. The other two approaches, UCB1
[2, 5] and Exp3 [5, 6] are more sophisticated algorithms that differ
in their assumptions about the nature of the rewards, i.e. whether

they follow unknown distributions or whether they are completely
adversarial. Note that all of our rationality models employ algo-
rithms for the multi-arm bandit setting, as in platforms like Taobao
or eBay, the impression allocation algorithms are unknown to the
sellers and therefore they can not calculate the payoffs of unused
auctions. The update of the weights to the strategies is based solely
on the observed payoffs, which is often referred to as the bandit
feedback setting [16].

We note here that while other related rationality models can be
used, the goal is to choose a model that real sellers would conceivably
use in practice. The semi-uniform algorithms are quite simpler and
model a lower degree of seller sophistication, whereas the other
two choices correspond to sellers that perhaps put more effort
and resources into optimizing their strategies - some examples of
sophisticated optimization services that are being used by online
agents are provided in [28]. Note that both UCB1 and Exp3 are
very well-known [9] and the latter is perhaps the most popular
bandit feedback implementation of the famous Hedge (or Multi-
plicative Weights Update) algorithm for no-regret learning in the
fully informed feedback setting.

The impression allocation problem
We model the impression allocation problem as a Markov decision
process (MDP) in which the information about the prices, past
transactions, past allocations of impressions and generated revenue
is stored in the states, and the actions correspond to all the different
ways of allocating the impressions, with the rewards being the im-
mediate revenue generated by each allocation. Given that the costs
of the sellers (which depend on their production costs) are private
information, it seems natural to employ reinforcement learning
techniques for solving the MDP and obtain more sophisticated im-
pression allocation algorithms than the heuristics that platforms
currently employ.

In our setting however, since we are allocating a very large num-
ber of impressions, both the state space and the action space are
extremely large and high-dimensional, which renders traditional re-
inforcement learning techniques such as temporal difference learn-
ing [38] or more specifically Q-learning [14] not suitable for solving
the MDP. In a highly influential paper, Mnih et al. [31] employed
the use of deep neural networks as function approximators to es-
timate the action-value function. The resulting algorithm, coined
“Deep Q Network” (DQN), can handle large (or even continuous)
state spaces but crucially, it can not be used for large or continuous
action domains, as it relies on finding the action that maximizes
the Q-function at each step.

To handle the large action space, policy gradient methods have
been proposed in the literature of reinforcement learning with
actor-critic algorithms rising as prominent examples [7, 15, 39],
where the critic estimates the Q-function by exploring, while the
actor adjusts the parameters of the policy by stochastic gradient
ascent. To handle the high-dimensionality of the action space, Silver
et al. [37] designed a deterministic actor-critic algorithm, coined
“Deterministic Policy Gradient” (DPG) which performs well in stan-
dard reinforcement-learning benchmarks such as mountain car,
pendulum and 2D puddle world. As Lillicrap et al. [27] point out
however, the algorithm falls short in large-scale problems and for

that reason, they developed the “Deep-DPG” (DDPG) algorithm
which uses the main idea from [31] and combines the deterministic
policy gradient approach of DPG with deep neural networks as
function approximators. To improve convergence and stability, they
employ previously known techniques such as batch normalization
[23], target Q-networks [30], and experience replay [1, 22, 31].

The IA(GRU) algorithm: We draw inspiration from the DDPG
algorithm to design a new actor-critic policy gradient algorithm for
the impression allocation problem, which we refer to as the IA(GRU)
algorithm. IA(GRU) takes advantage of the domain properties of
the impression allocation problem to counteract the shortcomings
of DDPG, which basically lie in its convergence when the number
of sellers increases. The modifications of IA(GRU) to the actor and
critic networks reduce the policy space to improve convergence
and render the algorithm robust to settings with variable sellers,
which may arrive and depart in each round, for which DDPG per-
forms poorly. We evaluate IA(GRU) against DDPG as well as several
natural heuristics similar to those usually employed by the online
platforms and perform comparisons in terms of the total revenue
generated. We show that IA(GRU) outperforms all the other algo-
rithms for all four rationality models, as well as a combined pool of
sellers of different degrees of sophistication.

2 THE SETTING
In the impression allocation problem of e-commerce websites, there
arem sellers who compete for a unit of buyer impression.1 In each
round, a buyer2 searches for a keyword and the platform returns a
ranking of sellers who provide an item that matches the keyword;
for simplicity, we will assume that all sellers provide identical items
that match the keyword exactly. Each seller i has a private cost ci for
the item, which can be interpreted as a production or a purchasing
cost drawn from an i.i.d. distribution Fs .

Typically, there are n slots (e.g. positions on a webpage) to be
allocated and we let xi j denote the probability (or the fraction of
time) that seller i is allocated the impression at slot j. With each
slot, there is an associated click-through-rate α j which captures the
“clicking potential” of each slot, and is independent of the seller, as
all items offered are identical. We let qi =

∑n
j=1 xi jα j denote the

probability that the buyer will click the item of seller i . Given this
definition (and assuming that sellers can appear in multiple slots
in each page), the usual feasibility constraints for allocations, i.e.
for all i , for all j, t holds that 0 ≤ xi j ≤ 1 and or all j, it holds that∑m
i=1 xi j ≤ 1 can be alternatively written as

for all i,qi ≥ 0, it holds that
m∑
i=1

qi ≤
n∑
j=1

α j and
n∑
j=1

α j = 1.

That is, for any such allocation q, there is a feasible ranking x that
realizes q (for ease of notation, we assume that the sum of click-
through rates of all slots is 1) and therefore we can allocate the

1Since the buyer impressions to be allocated is a huge number, we model it as a
continuous unit to be fractionally allocated. Even if we used a large integer number
instead, the traditional approaches like DDPG fall short for the same reasons and
furthermore all of the performance guarantees of IA(GRU) extend to that case.
2As the purchasing behavior is determined by the valuation of buyers over the item,
without loss of generality we could consider only one buyer at each round.

buyer impression to sellers directly instead of outputting a ranking
over these items when a buyer searches a keyword.3

Let hit = (vit ,pit ,nit , ℓit) denote the records of seller i at round
t , which is a tuple consisting of the following quantities:

(1) vit is the expected fraction of impressions that seller i gets,
(2) pit is the price that seller i sets,
(3) nit is the expected amount of transactions that seller i makes,
(4) ℓit is the expected revenue that seller i makes at round t .

Let Ht = (h1t ,h2t , ...,hit) denote the records of all sellers at round
t , and let Hit = (hi1,hi2, ...,hit) denote the vectors of records of
seller i from round 1 to round t , which we will refer to as the records
of the seller. At each round t + 1, seller i chooses a price pi (t+1) for
its item and the algorithm allocates the buyer impression to sellers.

MDP formulation: The setting can be defined as aMarkov decision
process (MDP) defined by the following components: a continuous
state space S, a continuous action space A, with an initial state
distribution with density p0 (s0), and a transition distribution of
states with conditional density p (st+1 |st ,at) satisfying the Markov
property, i.e. p (st+1 |s0,a0, ..., st ,at) = p (st+1 |st ,at). Furthermore,
there is an associated reward function r : S × A → R assigning
payoffs to pairs of states and actions. Generally, a policy is a function
π that selects stochastic actions given a state, i.e, π : S → P (A),
where P (A) is the set of probability distributions on A. Let Rt
denote the discounted sum of rewards from the state st , i.e, Rt (st) =∑∞
k=t γ

k−t r (sk ,ak), where 0 < γ < 1. Given a policy and a state, the
value function is defined to be the expected total discounted reward,
i.e. V π (s) = E[Rt (st) |st = s;π] and the action-value function is
defined as Qπ (s,a) = E[Rt (st) |st = s,at = a;π].

For our problem, a state st of the MDP consists of the records
of all sellers in the last T rounds, i.e. st = (Ht−T , ...,Ht−1), that is,
the state is a (T ,m, 4) tensor, the allocation outcome of the round is
the action, and the immediate reward is the expected total revenue
generated in this round. The performance of an algorithm is defined
as the average expected total revenue over a sequence ofT0 rounds.

Buyer Behaviour: We model the behaviour of the buyer as being
dependent on a valuation that comes from a distribution with cu-
mulative distribution function Fb . Intuitively, this captures the fact
that buyers may have different spending capabilities (captured by
the distribution). Specifically, the probability that the buyer pur-
chases item i is nit = (1 − Fb (pit)) · vit , that is, the probability of
purchasing is decided by the impression allocation and the price
seller i sets. For simplicity and without loss of generality with re-
spect to our framework, we assume that the buyer’s valuation is
drawn fromU (0, 1), i.e. the uniform distribution over [0, 1].

Seller Rationality
As we mentioned in the introduction, following a large body of
recent literature, we will assume that the sellers employ no-regret
type strategies for choosing their prices in the next round. Generally,
a seller starts with a probability distribution over all the possible
prices, and after each round, it observes the payoffs that these

3The framework extends to cases where we need return similar but different items
to a buyer, i.e, the algorithm outputs a ranking over these items. Furthermore, our
approach extends trivially to the case when sellers have multiple items.

strategies generate and adjusts the probabilities accordingly. As we
already explained earlier, it is most natural to assume strategies in
the bandit feedback setting, where the seller does not observe the
payoffs of strategies in the support of its strategy which were not
actually used. The reason is that even if we assume that a seller can
see the prices chosen in a round by its competitors, it typically does
not have sufficient information about the allocation algorithm used
by the platform to calculate the payoffs that other prices would
have yielded. Therefore it is much more natural to assume that the
seller updates its strategy based on the observed rewards, using a
multi-arm bandit algorithm.

More concretely, the payoff of a seller i that receives vit im-
pressions in round t when using price pi j (t), is given by ui j (t) =
nit (pi j (t) − ci) = vit (1 − Fb (pit)) (pi j (t) − ci). For consistency, we
normalize the costs and the prices to lie in the unit interval [0, 1]
and we discretize the price space to a “dense enough” grid (of size
1/K , for some large enough K). This discretization can either be
enforced by the platform (e.g. the sellers are required to submit
bids which are multiples of 0.05) or can be carried out by the sell-
ers themselves in order to be able to employ the multi-arm bandit
algorithms which require the set of actions to be finite, and since
small differences in prices are unlikely to make much difference in
their payoffs.

We consider the following possible strategies for the sellers, based
on well-known bandit algorithms.

ε-Greedy [43]: With probability ε , each seller selects a strategy
uniformly at random and with probability 1 − ε , the strategy with
the best observed (empirical) mean payoff so far. The parameter
ε denotes the degree of exploration of the seller, whereas 1 − ε is
the degree of exploitation; here ε is drawn i.i.d. from the normal
distribution N (0.1, 0.1/3).

ε-First: For a horizon of T rounds, this strategy consists of an ex-
ploration phase first, over ε · T rounds, followed by an exploitation
phase, for the remaining period. In the exploration phase, the seller
picks a strategy uniformly at random. In the remaining rounds,
the sellers picks the strategy that maximizes the empirical mean
of the observed rewards. For each seller, we setT = 200 and ε = 0.1.

Exponential-weight Algorithm for Exploration and Exploita-
tion (Exp3) [5, 6]: We use the definition of the algorithm from
[6]. Let γ ∈ (0, 1] be a real number and initialize wi (1) = 1 for
i = 1, . . . ,K + 1 to be the initial weights of the possible prices4. In
each round t ,

• For i = 1, . . . ,K + 1, let πi (t) = (1 − γ) wi (t)∑K+1
j=1 w j (t)

+
γ

K+1 ,

wherewi (t) is the weight of price pi in round t .
• Select a price pj (t) according to the probability distribution
defined by π1 (t), . . . ,πK+1 (t).
• Receive payoff uj (t) ∈ [0, 1].

4For ease of notation, we drop the subscript referring to a specific seller, as there is no
ambiguity.

• For ℓ = 1, . . . ,K + 1, let

ûℓ (t) =



uℓ (t)/πℓ (t), if ℓ = j

0, otherwise

andwℓ (t + 1) = wℓ (t)e
γ ·ûℓ (t)/(K+1) .

We remark here that since the payoff of each seller in some round
t actually takes values in [−1, 1], we scale the payoff to [0, 1] by
applying the transformation f (u) = (u + 1)/2 to any payoff u.

Upper Confidence Bound Algorithm (UCB1) [2, 4]: For each
price pj ∈ [0, 1/K , 2/K , . . . , 1], initialize x j (1) = 0. At the end of
each round t , update x j (t) as:

x j (t) =



x j (t − 1)/t + uj (t)/t , if j was chosen in this round t
x j (t − 1), otherwise

For any round t ∈ {0, . . . ,K }, the seller chooses a price pj that has
not been used before in any of the previous rounds (breaking ties
arbitrarily). For any round t ≥ K + 1, the seller chooses the price
pj with the maximum weighted value x j , i.e,

pj (t) ∈ arg max
j ∈{0,1/K, ...,1}

x j (t) +
log2 t∑t
τ=1 Ijτ

, where Ijτ is the indicator function, i.e.

Ijτ =



1, if pj was chosen in round τ
0, otherwise.

ε-Greedy and ε-First are simple strategies that maintain a clear
distinction between exploration and exploitation and belong to the
class of semi-uniform strategies. Exp3 is themostwidely used bandit
version of perhaps the most popular no-regret algorithm for the full
information setting, the Hedge (or Multiplicative Weight updates)
algorithm [17] and works in the adversarial bandit feedback model
[6], where no distributional assumptions are being made about the
nature of the rewards. UCB1, as the name suggests, maintains a
certain level of optimism towards less frequently played actions
(given by the second part of the sum) and together with this, it
uses the empirical mean of observed actions so far to choose the
action in the next round. The algorithm is best suited in scenarios
where the rewards do follow some distribution which is however
unknown to the seller.

For a more detailed exposition of all these different algorithms,
[9] provides a concise survey. The point made here is that these
choices are quite sensible as they (i) constitute choices that a rel-
atively sophisticated seller, perhaps with a research team at its
disposal could make, (ii) can model sellers with different degrees of
sophistication or pricing philosophies and (iii) are consistent with
the recent literature on algorithmic mechanism design, in terms of
modeling agent rationality in complex dynamic environments.

3 ALLOCATION ALGORITHMS
In this section, we will briefly describe the algorithms that we will
be comparing IA(GRU) against - two natural heuristics similar to
those employed by platforms for the impression allocation problem,
as well as the DDPG algorithm of Lillicrap et al. [27].

Heuristic Allocation Algorithms
As the strategies of the sellers are unknown to the platform, and
the only information available is the sellers’ historical records, the
platform can only use that information for the allocation. Note
that these heuristics do not take the rationality of the sellers into
account, when deciding on the allocation of impressions.

The first algorithm is a simple greedy algorithm, which allocates
the impressions proportionally to the revenue contribution.

Greedy Myopic Algorithm: At round 0, the algorithm allocates a
1/m-fraction of the buyer impression to each seller. At any other
round τ + 1 (for τ ≥ 0), the algorithm allocates a fraction of
ℓiτ /
∑m
j=1 ℓjτ of the buyer impression to each seller, i.e. propor-

tionally to the contribution of each seller to the total revenue of
the last round.

The second algorithm is an algorithm for the contextual multi-arm
bandit problem, proposed by [26], based on the principles of the
family of upper confidence bound algorithms (UCB1 is an algo-
rithm in this family). The algorithm is among the state of the art
solutions for recommender systems [9] and is an example of contex-
tual bandit approaches, which are widely applied to such settings
[3, 8, 25, 26]. To prevent any confusion, we clarify here that while
we also used bandit algorithms for the seller rationality models,
the approach here is fundamentally different as the Linear UCB
Algorithm is used for the allocation of impressions - not the choice
of prices - and the arms in this case are the different sellers.

Linear UCB Algorithm [26]: We implement the algorithm as
described in [26] - in the interest of space, we do not provide the
definition of the algorithm, but refer the reader to Algorithm 1 in
[26]. We model each seller as an arm and set hit as the feature of
each arm i in each round t . The parameter α is set to 1.

Deep Deterministic Policy Gradient
Here, we briefly describe the DDPG algorithm of [27], which we we
draw inspiration from in order to design our impression allocation
algorithm. Before describing the algorithm, we briefly mention the
main ingredients of its predecessor, the DPG algorithm of Silver et
al. [37].

Deterministic Policy Gradient: The shortcoming of DQN [31] is
that while it can handle continuous states, it can not handle continu-
ous actions or high-dimensional action spaces. Although stochastic
actor-critic algorithms could handle continuous actions, they are
hard to converge in high dimensional action spaces. The DPG algo-
rithm [37] aims to train a deterministic policy µθ : S → A with
parameter vector θ ∈ Rn . This algorithm consists of two compo-
nents: an actor, which adjusts the parameters θ of the deterministic
policy µθ (s) by stochastic gradient ascent of the gradient of the
discounted sum of rewards, and the critic, which approximates the
action-value function.

DeepDeterministic PolicyGradient:Directly training neural net-
works for the actor and the critic of the DPG algorithm fails to

achieve convergence; the main reason is the high degree of tempo-
ral correlation which introduces high variance in the approximation
of the Q-function by the critic. For this reason, the DDPG algorithm
uses a technique known as experience replay, according to which
the experiences of the agent at each time step are stored in a replay
buffer and then a mini-batch is sampled uniformly at random from
this set for learning, to eliminate the temporal correlation. The
other modification is the employment of target networks for the
regularization of the learning algorithm. The target network is used
to update the values of µ andQ at a slower rate instead of updating
by the gradient network; the prediction yt will be relatively fixed
and violent jitter at the beginning of training is absorbed by the
target network. A similar idea appears in [42] with the form of
double Q-value learning.

4 THE IMPRESSION ALLOCATION (GRU)
ALGORITHM

In this section, we present our main deep reinforcement learning
algorithm, termed IA(GRU) (“IA” stands for “impression allocation”
and “GRU” stands for “gated recurrent unit”) which is in the center
of our framework for impression allocations in e-commerce plat-
forms and is based on the ideas of the DDPG algorithm. Before we
present the algorithm, we highlight why simply applying DDPG to
our problem can not work.

Shortcomings of DDPG: First of all, while DDPG is designed for
settings with continuous and often high-dimensional action spaces,
the blow-up in the number of actions in our problem is very sharp
as the number of sellers increases; this is because the action space
is the set of all feasible allocations, which increases very rapidly
with the number of sellers. As we will show in Section 5, the direct
application of the algorithm fails to converge even for a moderately
small number of sellers. The second problem comes from the in-
ability of DDPG to handle variability on the set of sellers. Since the
algorithm uses a two-layer fully connected network, the position
of each seller plays a fundamental role; each seller is treated as a
different entity according to that position. As we show in Section 5,
if the costs of sellers at each round are randomly selected, the per-
formance of the DDPG algorithm deteriorates rapidly. The settings
in real-life e-commerce platforms however are quite dynamic, with
sellers arriving and leaving or their costs varying over time, and for
an allocation algorithm to be applicable, it should be able to handle
such variability. We expect that each seller’s features are only af-
fected by its historical records, not some “identity” designated by
the allocation algorithm; we refer to this highly desirable property
as "permutation invariance". Based on time-serial techniques, our
algorithm uses Recurrent Neural Networks at the dimension of the
sellers and achieves the property.

The IA(GRU) algorithm: Next, we explain the design of our algo-
rithm, but we postpone some implementation details for Section 5.
At a high level, the algorithm uses the framework of DDPG with
different network structures and different inputs of networks. It
maintains a sub-actor network and a sub-critic network for each

Figure 1: The framework of the actor network of the
IA(GRU) algorithm.

seller and employs input preprocessing at each training step, to en-
sure permutation invariance.

Input Preprocessing: In each step of training, with a state ten-
sor of shape (T ,m, 4), we firstly utilize a background network to
calculate a public vector containing information of all sellers: it
transforms the state tensor to a (T ,m×4) tensor and performs RNN
operations on the axis of rounds. At this step, it applies a permuta-
tion transformation, i.e. a technique for maintaining permutation
invariance. Specifically, it first orders the sellers according to a
certain metric, such as the weighted average of their past generated
revenue and then inputs the (state, action) pair following this order
to obtain the public vector (pv). On the other hand, for each seller
i , it applies a similar RNN operation on its history, resulting in
an individual temporal feature called (fi). Combining those two
features, we obtain a feature vector (pv, fi) that we will use as input
for the sellers’ sub-actor and sub-critic networks.

Actor network: For each seller, the input to the sub-actor network
is (pv, fi) and the output is a score. This algorithm uses a softmax
function over the outputs of all sub-actor networks in order to
choose an action. The structure of the policy which is shown in
Figure 1 ensures that the policy space is much smaller than that of
DDPG as the space of inputs of all sub-actor networks is restricted,
and allows for easier convergence, as we will show in Section 5.

Critic network: For the critic, we make use of a domain-specific
property, namely that the immediate reward of each round is the
sum of revenues of all sellers and the record of each seller has the
same space. Each sub-critic network inputs the expected fraction of
buyer impression the seller gets (the sub-action) and (pv, fi) (the
sub-state) as input and outputs the Q-value of the corresponding

seller, i.e, the expected discounted sum of revenues from the sub-
state following the policy. Then, it sums up the estimated Q-value of
all sub-critic networks to output the final estimated Q-value, with
the assumption that the strategy of each seller is independent of the
records of other sellers, which is the case in all of our rationality
models. The framework of the critic network is similar to Figure 1.

5 EXPERIMENTAL EVALUATION
In this section, we present the evaluation of our algorithms in
terms of convergence time and revenue performance against several
benchmarks, namely the direct application of the DDPG algorithm
(with a fully connected network) and the heuristic allocation algo-
rithms that we defined in Section 3. We use Tensorflow and Keras as
the engine for the deep learning, combining the idea of DDPG and
the techniques mentioned in Section 4, to train the neural network.

Designed experiments: First, wewill compare IA(GRU) andDDPG
in terms of their convergence properties in the training phase and
show that the former converges while the latter does not. Next, we
will compare the four different algorithms (Greedy Myopic, Linear
UCB, DDPG and IA(GRU)) in terms of the generated revenue for
two different settings, a setting with fixed sellers and a setting with
variable sellers. The difference is that in the former case, we sample
the costs ci once in the beginning whereas in the latter case, the
cost ci of each seller is sampled again in each round. This can ei-
ther model the fact that the production costs of sellers may vary
based on unforeseeable factors or simply that sellers of different
capabilities may enter the market in each round.

For each one of these two settings, we will compare the four
algorithms for each one of the four different rationality models
(ϵ-Greedy, ϵ-First, UCB1 and Exp3) separately as well as in a com-
bined manner, by assuming a mixed pool of sellers, each of which
may adopt a different rationality model from the ones above. The
latter comparison is meant to capture cases where the population
of sellers is heterogeneous and may consist of more capable sellers
that employ their R&D resources to come up with more sophisti-
cated approaches (such as UCB1 or Exp3) but also on more basic
sellers that employ simpler strategies (such as ϵ-Greedy). Another
interpretation is that the distinction is not necessarily in terms of
sophistication, but could also be due to different market research,
goals, or general business strategies, which may lead to different
decisions in terms of which strategy to adopt.

Our experiments are run for 200 sellers, a case which already
captures a lot of scenarios of interest in real e-commerce platforms.
A straightforward application of the reinforcement learning algo-
rithms formuch larger numbers of sellers is problematic however, as
the action space of the MDP increases significantly, which has dras-
tic effects on their running time. To ensure scalability, we employ a
very natural heuristic, where we divide the impression allocation
problem into sub-problems and then solve each one of those in par-
allel. We show at the end of the section that this “scale-and-solve”
version of IA(GRU) clearly outperforms the other algorithms for
large instances consisting of as many as 10.000 sellers.

Experimental Setup: In the implementation of DDPG, the actor
network uses two full connected layers, a rectified linear unit (ReLu)

(a) Rewards of DDPG in training (b) Rewards of IA(GRU) in training

Figure 2: Rewards of DDPG and IA(GRU) in training for ra-
tional sellers.

as the activation function, and outputs the action by a softmax func-
tion. The critic network inputs a (state,action) pair and outputs the
estimation of the Q-value using similar structure. The algorithm
IA(GRU) uses the same structure, i.e. the fully connected network in
the sub-actor and sub-critic networks, and uses a Recurrent Neural
Network with gate recurrent units (GRU) in cyclic layers to obtain
the inputs of these networks. For the experiments we set T = 1, i.e,
the record of all items of the last round is viewed as the state.5 We
employ heuristic algorithms such as the Greedy Myopic Algorithm
for exploration, i.e. we add these samples to the replay buffer before
training.

Experimental Parameters: We use 1000 episodes for both train-
ing and testing, and there are 1000 steps in each episode. The valua-
tion of the buyer in each round is drawn from the standard uniform
distributionU (0, 1) and the costs of sellers follow a Gaussian distri-
bution with mean 1/2 and variance 1/2. The size of the replay buffer
is 105, the discount factor γ is 0.99, and the rate of update of the
target network is 10−3. The actor network and the critic network
are trained via the Adam algorithm, a gradient descent algorithm
presented in [24], and the learning rates of these two networks are
10−4. Following the same idea as in [27], we add Gaussian noise to
the action outputted by the actor network, with the mean of the
noise decaying with the number of episodes in the exploration.

Convergence of DDPG and IA(GRU)
First, to show the difference in the convergence properties of DDPG
and IA(GRU), we train the algorithms for 200 sellers using the ϵ-
greedy strategy as the rationality model with variable costs for
the sellers. Figure 2 shows the comparison between the rewards of
the algorithms and Figure 3 shows the comparison in terms of the
training loss with the number of steps.

The gray band shows the variance of the vector of rewards near
each step. From the figures, we see that DDPG does not converge,
while IA(GRU) converges, as the training loss of the algorithm
decreases with the number of steps. The convergence properties
for the other rationality models are very similar.

5We found out that training our algorithms for larger values of T does not help to
improve the performance.

(a) Loss of DDPG in training (b) Loss of IA(GRU) in training

Figure 3: Loss of DDPG and IA(GRU) in training for rational
sellers.

Performance Comparison
In this subsection, we present the revenue guarantees of IA(GRU)
in the setting with 200 sellers and how it fairs against the heuristics
and DDPG, for either each rationality model separately, or for a
heterogeneous pool of sellers, with a 1/4-fraction of the sellers
following each strategy. As explained in the previous page, we con-
sider both the case of fixed sellers and variable sellers.

Performance Comparison for Fixed Sellers: We show the per-
formance of DDPG, IA(GRU), Greedy Myopic and Linear UCB on
sellers using
• the ϵ-Greedy strategy (Figure 4),
• the ϵ-First strategy (Figure 5),
• the UCB1 strategy (Figure 6),
• the Exp3 strategy (Figure 7).

We also show the performance of the four different algorithms in
the case of a heterogeneous population of sellers in Figure 8.

Every point of the figures shows the reward at the corresponding
step. We can conclude that the IA(GRU) algorithm is clearly better
than the other algorithms in terms of the average reward on all
rationality models. We also note that DPPG does not converge with
200 sellers and this is the reason for its poor performance.

Performance Comparison for Variable Sellers: We show the
performance of DDPG, IA(GRU), Greedy Myopic and Linear UCB
on sellers using
• the ϵ-Greedy strategy (Figure 9),
• the ϵ-First strategy (Figure 10),
• the UCB1 strategy (Figure 11),
• the Exp3 strategy (Figure 12).

We also show the performance of the four different algorithms
in the case of a heterogeneous population of sellers in Figure 13.
Again here, we can conclude that the IA(GRU) algorithm clearly
outperforms all the other algorithms in terms of the average reward
on all rationality models. Also, IA(GRU) fairs better in terms of
stability, as the other algorithms perform worse in the setting with
variable sellers, compared to the setting with fixed sellers.

Scalability
In this subsection, we present the revenue guarantees of IA(GRU)
in the setting with 10000 fixed sellers and how it fairs against the

Figure 4: Rewards for fixed sellers and ϵ-Greedy strategies.

Figure 5: Rewards for fixed sellers and ϵ-First strategies.

Figure 6: Rewards for fixed sellers and UCB1 strategies.

heuristics and DDPG to show the scalability properties of IA(GRU)
with the number of sellers. For IA(GRU) and DDPG, we will employ
a simple “scale-and-solve” variant, since applying either of them
directly to the pool of 10.000 sellers is prohibitive in terms of their
running time. We design 50 allocation sub-problems, consisting of
200 sellers each, and divide the total number of impressions in 50
sets of equal size, reserved for each sub-problem. We run IA(GRU)
and DDPG algorithms in parallel for each sub-problem, which is

Figure 7: Rewards for fixed sellers and Exp3 strategies.

Figure 8: Rewards for fixed sellers and heterogeneous strate-
gies.

Figure 9: Rewards for variable sellers and ϵ-Greedy strate-
gies.

feasible in reasonable time. For the heuristics, we run the algorithms
directly on the large population of 10.000 sellers. The results for the
case of ϵ-Greedy seller strategies are show in Figure 14 (the results
for other strategies are similar). We can see that even though we
are applying a heuristic version, the performance of IA(GRU) is

Figure 10: Rewards for variable sellers and ϵ-First strategies.

Figure 11: Rewards for variable sellers and UCB1 strategies.

Figure 12: Rewards for variable sellers and Exp3 strategies.

still clearly superior to all the other algorithms, which attests to
the algorithm being employable in larger-case problems as well.

6 CONCLUSION
In this paper, we employed a reinforcement mechanism design
framework for solving the impression allocation problem of large
e-commerce websites, while taking the rationality of sellers into

Figure 13: Rewards for variable sellers and heterogeneous
strategies.

Figure 14: Rewards for 10.000 fixed sellers and ϵ-Greedy
strategies.

account. Inspired by recent advances in reinforcement learning, we
designed a deep reinforcement learning algorithm which outper-
forms several natural heuristics under different realistic rationality
assumptions for the sellers in terms of the generated revenue, as
well as state-of-the-art reinforcement learning algorithms in terms
of performance and convergence guarantees.

Our algorithm can be applied to other dynamical settings for
which the objectives are similar, i.e. there are multiple agents with
evolving strategies, with the objective of maximizing a sum of pay-
ments or the generated revenue of each agent. It is an interesting
future direction to identify several such concrete settings and ap-
ply our algorithm (or more generally our framework), to see if it
provides improvements over the standard approaches, as it does
here.

ACKNOWLEDGMENTS
Qingpeng Cai and Pingzhong Tang were supported in part by the
National Natural Science Foundation of China Grant 61561146398,
a Tsinghua University Initiative Scientific Research Grant, a China
Youth 1000-talent program and Alibaba Innovative Research pro-
gram. Aris Filos-Ratsikas was supported by the ERC Advanced
Grant 321171 (ALGAME).

REFERENCES
[1] Sander Adam, Lucian Busoniu, and Robert Babuska. 2012. Experience replay for

real-time reinforcement learning control. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42, 2 (2012), 201–212.

[2] Rajeev Agrawal. 1995. Sample mean based index policies by O (log n) regret for
the multi-armed bandit problem. Advances in Applied Probability 27, 4 (1995),
1054–1078.

[3] Shipra Agrawal and Navin Goyal. 2013. Thompson sampling for contextual
bandits with linear payoffs. In International Conference on Machine Learning.
127–135.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[5] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 1995.
Gambling in a rigged casino: The adversarial multi-armed bandit problem. In
Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on.
IEEE, 322–331.

[6] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1
(2002), 48–77.

[7] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee.
2007. Incremental Natural Actor-Critic Algorithms.. In NIPS. 105–112.

[8] Djallel Bouneffouf, Amel Bouzeghoub, and Alda Lopes Gançarski. 2012. A
contextual-bandit algorithm for mobile context-aware recommender system.
In International Conference on Neural Information Processing. Springer, 324–331.

[9] Giuseppe Burtini, Jason Loeppky, and Ramon Lawrence. 2015. A survey of
online experiment design with the stochastic multi-armed bandit. arXiv preprint
arXiv:1510.00757 (2015).

[10] Qingpeng Cai, Aris Filos-Ratsikas, Chang Liu, and Pingzhong Tang. 2016. Mech-
anism Design for Personalized Recommender Systems. In Proceedings of the 10th
ACM Conference on Recommender Systems. ACM, 159–166.

[11] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2018.
Reinforcement Mechanism Design for Fraudulent Behaviour in e-Commerce.
(2018).

[12] Shuchi Chawla, JasonHartline, andDenis Nekipelov. 2016. A/B testing of auctions.
In Proceedings of the 2016 ACM Conference on Economics and Computation. ACM,
19–20.

[13] Constantinos Daskalakis and Vasilis Syrgkanis. 2016. Learning in auctions: Regret
is hard, envy is easy. In Foundations of Computer Science (FOCS), 2016 IEEE 57th
Annual Symposium on. IEEE, 219–228.

[14] Peter Dayan and CJCH Watkins. 1992. Q-learning. Machine learning 8, 3 (1992),
279–292.

[15] Thomas Degris, Patrick M Pilarski, and Richard S Sutton. 2012. Model-free
reinforcement learning with continuous action in practice. In American Control
Conference (ACC), 2012. IEEE, 2177–2182.

[16] Dylan J Foster, Zhiyuan Li, Thodoris Lykouris, Karthik Sridharan, and Eva Tardos.
2016. Learning in games: Robustness of fast convergence. In Advances in Neural
Information Processing Systems. 4734–4742.

[17] Yoav Freund and Robert E Schapire. 1995. A desicion-theoretic generalization
of on-line learning and an application to boosting. In European conference on
computational learning theory. Springer, 23–37.

[18] Sergiu Hart. 2005. Adaptive heuristics. Econometrica 73, 5 (2005), 1401–1430.
[19] Sergiu Hart and Andreu Mas-Colell. 2000. A simple adaptive procedure leading

to correlated equilibrium. Econometrica 68, 5 (2000), 1127–1150.
[20] Sergiu Hart and Andreu Mas-Colell. 2001. A general class of adaptive strategies.

Journal of Economic Theory 98, 1 (2001), 26–54.
[21] Jason Hartline, Vasilis Syrgkanis, and Eva Tardos. 2015. No-regret learning in

Bayesian games. In Advances in Neural Information Processing Systems. 3061–
3069.

[22] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. 2015.
Memory-based control with recurrent neural networks. arXiv preprint
arXiv:1512.04455 (2015).

[23] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[24] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[25] Andreas Krause and Cheng S Ong. 2011. Contextual gaussian process bandit
optimization. In Advances in Neural Information Processing Systems. 2447–2455.

[26] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. ACM, 661–670.

[27] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[28] Thodoris Lykouris, Vasilis Syrgkanis, and Éva Tardos. 2016. Learning and effi-
ciency in games with dynamic population. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and
Applied Mathematics, 120–129.

[29] Eric S Maskin. 2008. Mechanism design: How to implement social goals. The
American Economic Review 98, 3 (2008), 567–576.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[32] Denis Nekipelov, Vasilis Syrgkanis, and Eva Tardos. 2015. Econometrics for
learning agents. In Proceedings of the Sixteenth ACM Conference on Economics
and Computation. ACM, 1–18.

[33] A Blum PI, M Blum, M Kearns, T Sandholm, and MT Hajiaghayi. [n. d.]. Machine
Learning, Game Theory, and Mechanism Design for a Networked World. ([n.
d.]).

[34] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recom-
mender systems handbook. Springer.

[35] Ariel Rubinstein. 1998. Modeling bounded rationality. MIT press.
[36] Weiran Shen, Binghui Peng, Hanpeng Liu, Michael Zhang, Ruohan Qian, Yan

Hong, Zhi Guo, Zongyao Ding, Pengjun Lu, and Pingzhong Tang. 2017. Rein-
forcement mechanism design, with applications to dynamic pricing in sponsored
search auctions. arXiv preprint arXiv:1711.10279 (2017).

[37] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In International
Conference on Machine Learning (ICML.

[38] Richard S Sutton. 1988. Learning to predict by themethods of temporal differences.
Machine learning 3, 1 (1988), 9–44.

[39] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al.
1999. Policy gradient methods for reinforcement learning with function approxi-
mation.. In NIPS, Vol. 99. 1057–1063.

[40] Pingzhong Tang. 2017. Reinforcement Mechanism Design. In Early Carrer High-
lights at Proceedings of the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI. 5146–5150.

[41] Eva Tardos. 2017. Learning and Efficiency of Outcomes in Games. (2017). Seminar
Slides.

[42] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning.. In AAAI. 2094–2100.

[43] Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards.
Ph.D. Dissertation. King’s College, Cambridge.

	Abstract
	1 Introduction
	2 The setting
	3 Allocation algorithms
	4 The Impression Allocation (GRU) algorithm
	5 Experimental Evaluation
	6 Conclusion
	Acknowledgments
	References

