![]() |
|
I am a Senior Staff Algorithm Engineer(资深算法专家) in KuaiShou Technology. I am responsible for business optimization and technical management.
My core research interest lies in Reinforcement Learning, and its applications to Large Language Model and Practical Problems(Recommender System and Advertisting).
More information can be found in Google Scholar, DBLP,
Reinforcement Learning Works in Kuaishou Technology.
I am hiring students passionate about RL and LLM. If interested, please feel free to contact me. Email:cqpcurry [@] gmail [DOT] com
First Prize of the General track at the NeurIPS 2024 Competition: Auto-Bidding in Large-Scale Auctions [News Link]
First Prize of the AIGB track at the NeurIPS 2024 Competition: Auto-Bidding in Large-Scale Auctions [News Link]
2024年“钱伟长中文信息处理科学技术奖”自然科学类一等奖[News Link]
Reinforcement Learning for Short Video Recommender Systems
[pdf]
The 1st Workshop on
LARGE-SCALE VIDEO RECOMMENDER SYSTEMS@ACM RecSys'23
Reinforcement Learning for Industrial Recommender Systems
[pdf]
DRL4IR@SIGIR2022
Agent-based Information Retrieval Workshop @SIGIR 2024, SIGIR 2025
NeurIPS
AAMAS, CIKM
TMLR, ICLR, ICML, KDD, WWW, IJCAI, AAAI
1.Navigate the Unknown: Enhancing LLM Reasoning with Intrinsic Motivation Guided Exploration
[pdf]
Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai*, Peng Jiang, Xiangyu Zhao
36.Random Policy Evaluation Uncovers Policies of Generative Flow Networks
Haoran He, Emmanuel Bengio, Qingpeng Cai, Ling Pan
ICML-2025
35.LLM-Powered Efficient User Simulator for Recommender System
[pdf]
Zijian Zhang, Shuchang Liu, Ziru Liu, Rui Zhong, Qingpeng Cai*, Xiangyu Zhao, Chunxu Zhang, Qidong Liu, Peng Jiang
AAAI-2025, Oral
34.Flow Factorization for Efficient Generative Flow Networks
[pdf]
Jiashun Liu, Chunhui Li, Cheng-Hao Liu, Dianbo Liu, Qingpeng Cai, Ling Pan
AAAI-2025, Oral
33.DLCRec: A Novel Approach for Managing Diversity in LLM-Based Recommender Systems
[pdf]
Jiaju Chen, Chongming Gao, Shuai Yuan, Shuchang Liu, Qingpeng Cai, Peng Jiang
WSDM-2025
32.Generative Auto-Bidding with Value-Guided Explorations[pdf]
Jingtong Gao, Yewen Li, Shuai Mao, Peng Jiang, Nan Jiang, Yejing Wang, Qingpeng Cai*, Fei Pan, Peng Jiang, Kun Gai, Bo An, Xiangyu Zhao
SIGIR-2025
31.GAS: Generative Auto-bidding with Post-training Search
[pdf]
Yewen Li, Shuai Mao, Jingtong Gao, Nan Jiang, Yunjian Xu, Qingpeng Cai*, Fei Pan, Peng Jiang, Bo An
WWW-2025, Industry Track
30.AURO: Reinforcement Learning for Adaptive User Retention Optimization in Recommender Systems[pdf]
Zhenghai Xue, Qingpeng Cai*, Tianyou Zuo, Bin Yang, Lantao Hu, Peng Jiang, Kun Gai, Bo An
WWW-2025, Oral
29.Value Function Decomposition in Markov Recommendation Process[pdf]
Xiaobei Wang, Shuchang Liu, Qingpeng Cai, Xiang Li, Lantao Hu, Han Li, Guangming Xie
WWW-2025, Oral
28.Modeling User Retention through Generative Flow Networks
[pdf]
Ziru Liu, Shuchang Liu, Bin Yang, Zhenghai Xue, Qingpeng Cai*, Xiangyu Zhao, Zijian Zhang, Lantao Hu, Han Li, Peng Jiang
KDD-2024, industry track
27.Future Impact Decomposition in Request-level Recommendations
[pdf]
Xiaobei Wang, Shuchang Liu, Xueliang Wang, Qingpeng Cai*, Lantao Hu, Han Li, Peng Jiang, Guangming Xie
KDD-2024, industry track
26.Sequential Recommendation for Optimizing Both Immediate Feedback and Long-term Retention
[pdf]
Ziru Liu, Shuchang Liu, Zijian Zhang, Qingpeng Cai*, Xiangyu Zhao, Kesen Zhao, Lantao Hu, Peng Jiang, Kun Gai
SIGIR-2024
25.M3oE: Multi-Domain Multi-Task Mixture-of Experts Recommendation Framework
[pdf]
Zijian Zhang, Shuchang Liu, Jiaao Yu, Qingpeng Cai, Xiangyu Zhao, Chunxu Zhang, Ziru Liu, Qidong Liu, Hongwei Zhao, Lantao Hu, Peng Jiang, Kun Gai
SIGIR-2024
24.State Regularized Policy Optimization on Data with Dynamics Shift
[pdf]
Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, Bo An
NeurIPS-2023
23.KuaiSim: A Comprehensive Simulator for Recommender Systems
[pdf]
Kesen Zhao, Shuchang Liu, Qingpeng Cai*, Xiangyu Zhao*, Ziru Liu, Dong Zheng, Peng Jiang, Kun Gai
NeurIPS-2023
22.ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor
[pdf]
Wanqi Xue, Qingpeng Cai, Ruohan Zhan, Dong Zheng, Peng Jiang, Kun Gai, Bo An
ICLR-2023
21.PrefRec: Recommender Systems with Human Preferences for Reinforcing Long-term User Engagement
[pdf]
Wanqi Xue, Qingpeng Cai, Zhenghai Xue, Shuo Sun, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, Bo An
KDD-2023
20.Generative Flow Network for Listwise Recommendation
[pdf]
Shuchang Liu, Qingpeng Cai, Zhankui He, Bowen Sun, Julian McAuley, Dong Zheng, Peng Jiang, Kun Gai
KDD-2023
19.Multi-Task Recommendations with Reinforcement Learning
[pdf]
Ziru Liu, Jiejie Tian, Qingpeng Cai*, Xiangyu Zhao*, Jingtong Gao, Shuchang Liu, Dayou Chen, Tonghao He, Dong Zheng, Peng Jiang and Kun Gai
WWW-2023
18.Exploration and Regularization of the Latent Action Space in Recommendation
[pdf]
Shuchang Liu, Qingpeng Cai, Bowen Sun, Yuhao Wang, Dong Zheng, Peng Jiang, Kun Gai, Ji Jiang, Xiangyu Zhao and Yongfeng Zhang
WWW-2023
17.Two-Stage Constrained Actor-Critic for Short Video Recommendation
[pdf]
Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, Peng Jiang and Kun Gai
WWW-2023
16.Reinforcing User Retention in a Billion Scale Short Video Recommender System
[pdf] [news link]
Qingpeng Cai, Shuchang Liu, Xueliang Wang, Tianyou Zuo, Wentao Xie, Bin Yang, Dong Zheng, Peng Jiang and Kun Gai
WWW-2023, industry track
15.Exploration in policy optimization through multiple paths
Ling Pan, Qingpeng Cai, Longbo Huang
JAAMAS-2021
14.Softmax Deep Double Deterministic Policy Gradients
[pdf]
Ling Pan, Qingpeng Cai, Longbo Huang
NeurIPS-2020
13.Reinforcement Learning with Dynamic Boltzmann Softmax Updates
[pdf]
Ling Pan, Qingpeng Cai, Qi Meng, Wei Chen, Longbo Huang
IJCAI-2020
12.Multi-path Policy Optimization
[pdf]
Ling Pan, Qingpeng Cai, Longbo Huang
AAMAS-2020
(Invited for fast-track publication in JAAMAS, top 5%)
11.Deterministic Value-Policy Gradients
[pdf]
Qingpeng Cai, Ling Pan, Pingzhong Tang
AAAI-2020
10.Policy optimization with model-based explorations
Feiyang Pan, Qingpeng Cai, An-Xiang Zeng, Chun-Xiang Pan, Qing Da, Hualin He, Qing He, Pingzhong Tang
AAAI-2019
9.A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems
[pdf]
Ling Pan, Qingpeng Cai, Zhixuan Fang, Pingzhong Tang, Longbo Huang
AAAI-2019
8.Reinforcement Learning Driven Heuristic Optimization
[pdf]
Qingpeng Cai, Will Hang, Azalia Mirhoseini, George Tucker, Jingtao Wang, Wei Wei
DRL4KDD-2019
7.Policy gradients for contextual recommendations
Feiyang Pan, Qingpeng Cai, Pingzhong Tang, Fuzhen Zhuang, Qing He
WWW-2019
6.Reinforcement Mechanism Design for E-commerce
[pdf]
Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, Yiwei Zhang
WWW-2018
5.Reinforcement Mechanism Design for Fraudulent Behaviour in E-commerce
[pdf]
Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, Yiwei Zhang
AAAI-2018
4.Ranking Mechanism Design for Price-setting Agents in E-commerce
[pdf]
Qingpeng Cai, Pingzhong Tang, Yulong Zeng
AAMAS-2018
3.Multi-armed Bandit Mechanism With Private Histories
[pdf]
Chang Liu, Qingpeng Cai, Yukui Zhang
AAMAS-2017 (Extended abstract)
2.Facility location with Minimax Envy
[pdf]
Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang
IJCAI-2016
1.Mechanism Design for Personalized Recommender Systems
[pdf]
Qingpeng Cai, Aris Filos-Ratsikas, Chang Liu, Pingzhong Tang
Recsys-2016